# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import inspect import os import pickle import numpy as np import six import warnings from collections import Iterable from paddle import fluid from paddle.fluid.framework import in_dygraph_mode, Variable from paddle.fluid.executor import global_scope from paddle.fluid.io import is_belong_to_optimizer from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph.parallel import ParallelEnv from paddle.fluid.layers.utils import flatten from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy from paddle.fluid.incubate.fleet.base import role_maker from paddle.io import DataLoader, Dataset from .loss import Loss from .distributed import DistributedBatchSampler, _all_gather, prepare_distributed_context, _parallel_context_initialized from .metrics import Metric from .callbacks import config_callbacks from .utils import to_list, to_numpy, flatten_list, restore_flatten_list, extract_args from .device import _get_device __all__ = [ 'Model', 'Input', ] class Input(fluid.dygraph.Layer): """ Define inputs the model. Args: name (str): The name/alias of the variable, see :ref:`api_guide_Name` for more details. shape (tuple(integers)|list[integers]): List|Tuple of integers declaring the shape. You can set "None" or -1 at a dimension to indicate the dimension can be of any size. For example, it is useful to set changeable batch size as "None" or -1. dtype (np.dtype|VarType|str, optional): The type of the data. Supported dtype: bool, float16, float32, float64, int8, int16, int32, int64, uint8. Default: float32. Examples: .. code-block:: python import paddle.incubate.hapi as hapi input = hapi.Input('x', [None, 784], 'float32') label = hapi.Input('label', [None, 1], 'int64') """ def __init__(self, name, shape=None, dtype='float32'): super(Input, self).__init__() self.shape = shape self.dtype = dtype self.name = name def forward(self): return fluid.data(self.name, shape=self.shape, dtype=self.dtype) class StaticGraphAdapter(object): """ Model traning/inference with a static graph. """ def __init__(self, model): super(StaticGraphAdapter, self).__init__() self.model = model # with `_build_once` gone, parameters are now created in `__init__` # so we need to keep track of the parameters already created self._startup_prog = fluid.default_startup_program() self._orig_prog = fluid.default_main_program() self._label_vars = {} # label variables self._input_vars = {} # label variables self._endpoints = {} self._loss_endpoint = None self._executor = None self._progs = {} self._compiled_progs = {} self._merge_count = { 'eval_total': 0, 'test_total': 0, 'eval_batch': 0, 'test_batch': 0 } self._nranks = ParallelEnv().nranks self._local_rank = ParallelEnv().local_rank @property def mode(self): return self.model.mode @mode.setter def mode(self, value): self.model.mode = value def train_batch(self, inputs, labels=None): assert self.model._optimizer, \ "model not ready, please call `model.prepare()` first" self.mode = 'train' return self._run(inputs, labels) def eval_batch(self, inputs, labels=None): self.mode = 'eval' return self._run(inputs, labels) def test_batch(self, inputs): self.mode = 'test' return self._run(inputs, None) def parameters(self, *args, **kwargs): return self.model.network.parameters(*args, **kwargs) def save(self, path): def _save(state, path): if not state: return state = { k: to_numpy(v) if isinstance(v, Variable) else v for k, v in state.items() } with open(path, 'wb') as f: pickle.dump(state, f) base = os.path.basename(path) assert base != "", "path should be of 'dirname/filename' format" dir_name = os.path.dirname(path) if dir_name and not os.path.exists(dir_name): os.makedirs(dir_name) param_path = path + ".pdparams" _save(self.model.network.state_dict(), param_path) prog = self._progs.get('train', None) if prog is None or self.model._optimizer is None: return # XXX `optimizer.state_dict()` only work in dygraph mode optim_path = path + ".pdopt" optim = { p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars()) } if not optim: return _save(optim, optim_path) def load(self, param_state_pairs, optim_state): if self._executor is None: executor = fluid.Executor(fluid.CPUPlace())._default_executor else: executor = self._executor._default_executor # restore parameter states fluid.core._create_loaded_parameter( [param for param, state in param_state_pairs], global_scope(), executor) for param, state in param_state_pairs: self._set_var(param, state) # restore optimizer states # FIXME what if a different optimizer is used? if not self.model._optimizer or not optim_state: return self._load_optimizer(optim_state, executor) def _load_optimizer(self, state, executor): prog = self._progs.get('train', None) optim = list(filter(is_belong_to_optimizer, prog.list_vars())) if not optim: return fluid.core._create_loaded_parameter(optim, global_scope(), executor) converted_state = dict(state) for var in optim: if var.name in ["@LR_DECAY_COUNTER@", "global_step"]: # When using learning rate scheduler, dygraph would name the # global step var as "global_step" to save, while static-graph # would has a state var named as "@LR_DECAY_COUNTER@". # NOTE: dygraph saved global_step is 1 larger than that in # static-graph, since the time of global_step to increase is # different. state_val = ( np.array(converted_state.pop("global_step")) - 1 ) if "global_step" in converted_state else converted_state.pop( "@LR_DECAY_COUNTER@", None) if state_val is not None: converted_state[var.name] = state_val elif var.name.startswith("learning_rate_"): # When using static learning rate, static-graph would make it # a persistable var named 'unique_name.generate("learning_rate")', # However, dygraph wouldn't save it. if var.name not in state: continue else: # moment and other accumulators if var.name not in converted_state: # try to convert from dygraph name opt_name = self.model._optimizer._name opt_cls_name = self.model._optimizer.__class__.__name__ opt_unq_name = None for name in self.model._optimizer._accumulators.keys(): accum_name = name if opt_name is None else name[len( opt_name) + 1:] for param_name, state_var in self.model._optimizer._accumulators[ name].items(): if opt_unq_name is None: # can not infer out the exact unique(opt_name), # thus try to extract rather than generate for state_key in sorted( state.keys(), key=lambda x: len(x), reverse=True): prefix = param_name + "_" + ( opt_cls_name if opt_name is None else opt_name) + "_" if state_key.startswith(prefix): prefix_offset = state_key[len( prefix):].find("_") + len(prefix) opt_unq_name = state_key[len( param_name + "_"):prefix_offset] # TODO: assert # assert opt_unq_name is None # gen(param.name + "_" + gen(opt_name) + "_" + accum_name) # always end with "_0" since the unique optimizer._name dy_state_name = (param_name + "_" + opt_unq_name + "_" + accum_name + "_0") converted_state[ state_var.name] = converted_state.pop( dy_state_name) assert var.name in converted_state, \ "variable [{}] is not in optimizer state file".format(var.name) self._set_var(var, converted_state[var.name]) def _set_var(self, var, ndarray): t = global_scope().find_var(var.name).get_tensor() p = t._place() if p.is_cpu_place(): place = fluid.CPUPlace() elif p.is_cuda_pinned_place(): place = fluid.CUDAPinnedPlace() else: p = fluid.core.Place() p.set_place(t._place()) place = fluid.CUDAPlace(p.gpu_device_id()) t.set(ndarray, place) def _run(self, inputs, labels=None): compiled_prog = self._compiled_progs.get(self.mode, None) assert compiled_prog, \ "Model is not ready, please call `model.prepare()` first" inputs = to_list(inputs) if labels is not None: labels = to_list(labels) assert len(inputs) == len(self._input_vars[self.mode]), \ "number of inputs" \ + " does not match number of arguments of `forward` method" feed = {} input_names = [v.name for v in self._input_vars[self.mode]] for idx, n in enumerate(input_names): # train and test may take different arguments if inputs[idx] is not None: feed[n] = inputs[idx] if labels is not None: for idx, v in enumerate(self._label_vars[self.mode]): feed[v.name] = labels[idx] endpoints = self._endpoints[self.mode] if self.mode == 'test': fetch_list = endpoints['output'] else: metric_list, metric_splits = flatten_list(endpoints['metric']) fetch_list = endpoints['loss'] + metric_list num_loss = len(endpoints['loss']) # if fetch Variable is same as input Variable, do not fetch # from program, get it from input directly pruned_fetch_list = [] pruned_fetch_idx_name_map = [""] * len(fetch_list) for i, fetch_var in enumerate(fetch_list): if fetch_var.name in feed.keys(): pruned_fetch_idx_name_map[i] = fetch_var.name else: pruned_fetch_list.append(fetch_var) rets = self._executor.run(compiled_prog, feed=feed, fetch_list=pruned_fetch_list, return_numpy=False) # restore pruned fetch_list Variable from feeds for i, name in enumerate(pruned_fetch_idx_name_map): if len(name) > 0: rets.insert(i, feed[name]) # LoDTensor cannot be fetch as numpy directly rets = [np.array(v) for v in rets] if self.mode == 'test': return rets[:] losses = rets[:num_loss] metric_states = restore_flatten_list(rets[num_loss:], metric_splits) metrics = [] for metric, state in zip(self.model._metrics, metric_states): # cut off padding size if self.mode != 'train' and self.model._test_dataloader is not None \ and isinstance(self.model._test_dataloader, DataLoader) \ and self._nranks > 1: total_size = len(self.model._test_dataloader.dataset) # TODO: fixme if have better way to get batch size samples = state[0].shape[0] current_count = self._merge_count.get(self.mode + '_total', 0) if current_count + samples >= total_size: state = [ s[:int(total_size - current_count), ...] for s in state ] self._merge_count[self.mode + '_total'] = 0 self._merge_count[self.mode + '_batch'] = int(total_size - current_count) else: self._merge_count[self.mode + '_total'] += samples self._merge_count[self.mode + '_batch'] = samples metrics.append(metric.update(*state)) return (losses, metrics) if len(metrics) > 0 else losses def prepare(self): modes = ['train', 'eval', 'test'] for mode in modes: self._make_program(mode) self._compile_and_initialize(self._progs[mode], mode) def _make_program(self, mode): prog = self._progs.get(mode, None) if prog is not None: return prog = self._orig_prog.clone() # NOTE: When defining learning rate scheduling in static-graph, ops to # increase the global step var and calculate learning rate would be # prepended into _orig_prog. test program maked by `_orig_prog.clone` # also would include these ops. Thus must prune these ops in test # program, otherwise the global step would be changed in test. if mode != 'train': for op in list(prog.global_block().ops): prog.global_block()._remove_op(0) if mode == 'train' and self.model._optimizer \ and self.model._optimizer._learning_rate_map: # HACK workaround learning rate map issue lr_var = self.model._optimizer._learning_rate_map[self._orig_prog] new_lr_var = prog.global_block().vars[lr_var.name] self.model._optimizer._learning_rate_map[prog] = new_lr_var losses = [] metrics = [] with fluid.program_guard(prog, self._startup_prog): ins = self.model._inputs lbls = self.model._labels if self.model._labels else [] inputs = [k.forward() for k in to_list(ins)] labels = [k.forward() for k in to_list(lbls)] self._label_vars[mode] = labels outputs = to_list(self.model.network.forward(*inputs)) if mode != 'test' and self.model._loss_function: losses = self.model._loss_function(outputs, labels) if self._nranks > 1 and mode != 'train': outputs = [_all_gather(o, self._nranks) for o in outputs] if mode != 'test': labels = [_all_gather(l, self._nranks) for l in labels] if mode != 'test': for metric in self.model._metrics: metrics.append( to_list(metric.add_metric_op(*(outputs + labels)))) if mode == 'train' and self.model._optimizer: self._loss_endpoint = fluid.layers.sum(losses) if self._nranks > 1: role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) dist_strategy = DistributedStrategy() dist_strategy.mode = "collective" dist_strategy.collective_mode = "grad_allreduce" self.model._optimizer = fleet.distributed_optimizer( self.model._optimizer, strategy=dist_strategy) self.model._optimizer.minimize(self._loss_endpoint) if mode != 'train': # clone again to put it in test mode prog = prog.clone(for_test=True) self._input_vars[mode] = inputs self._progs[mode] = prog self._endpoints[mode] = { "output": outputs, "loss": losses, "metric": metrics } def _compile_and_initialize(self, prog, mode): compiled_prog = self._compiled_progs.get(mode, None) if compiled_prog is not None: return compiled_prog assert self.model._place is not None, \ "device is not set, please call `model.prepare()` first" place = self.model._place # XXX *ALL WEIGHTS* should be initialized upon model construction # even if `forward()` may run different code path for different mode # therefore startup program only needs to run once if self._executor is None: self._executor = fluid.Executor(place) # XXX incremental initialization uninitialized = [] for var_py in self._startup_prog.list_vars(): var = fluid.global_scope().find_var(var_py.name) if not var_py.name.startswith('nccl_id') and var and \ var.get_tensor()._is_initialized(): continue uninitialized.append(var_py) if uninitialized: startup_prog = self._startup_prog._prune(uninitialized) self._executor.run(startup_prog) if self._nranks < 2: compiled_prog = fluid.CompiledProgram(prog) else: compiled_prog = prog self._compiled_progs[mode] = compiled_prog class DynamicGraphAdapter(object): def __init__(self, model): super(DynamicGraphAdapter, self).__init__() self.model = model self._nranks = ParallelEnv().nranks self._local_rank = ParallelEnv().local_rank self._merge_count = { 'eval_total': 0, 'test_total': 0, 'eval_batch': 0, 'test_batch': 0 } if self._nranks > 1: stradegy = fluid.dygraph.parallel.ParallelStrategy() stradegy.nranks = ParallelEnv().nranks stradegy.local_rank = ParallelEnv().local_rank stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints stradegy.current_endpoint = ParallelEnv().current_endpoint self.ddp_model = fluid.dygraph.parallel.DataParallel( self.model.network, stradegy) @property def mode(self): return self.model.mode @mode.setter def mode(self, value): self.model.mode = value # TODO multi device in dygraph mode not implemented at present time def train_batch(self, inputs, labels=None): assert self.model._optimizer, \ "model not ready, please call `model.prepare()` first" self.model.network.train() self.mode = 'train' inputs = to_list(inputs) if labels is not None: labels = [to_variable(l) for l in to_list(labels)] if self._nranks > 1: outputs = self.ddp_model.forward(* [to_variable(x) for x in inputs]) losses = self.model._loss_function(outputs, labels) final_loss = fluid.layers.sum(losses) final_loss = self.ddp_model.scale_loss(final_loss) final_loss.backward() self.ddp_model.apply_collective_grads() else: outputs = self.model.network.forward( * [to_variable(x) for x in inputs]) losses = self.model._loss_function(outputs, labels) final_loss = fluid.layers.sum(losses) final_loss.backward() self.model._optimizer.minimize(final_loss) self.model.network.clear_gradients() metrics = [] for metric in self.model._metrics: metric_outs = metric.add_metric_op(*(to_list(outputs) + to_list( labels))) m = metric.update(* [to_numpy(m) for m in to_list(metric_outs)]) metrics.append(m) return ([to_numpy(l) for l in losses], metrics) \ if len(metrics) > 0 else [to_numpy(l) for l in losses] def eval_batch(self, inputs, labels=None): self.model.network.eval() self.mode = 'eval' inputs = to_list(inputs) if labels is not None: labels = [to_variable(l) for l in to_list(labels)] outputs = self.model.network.forward(* [to_variable(x) for x in inputs]) if self.model._loss_function: losses = self.model._loss_function(outputs, labels) else: losses = [] if self._nranks > 1: outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)] labels = [_all_gather(l, self._nranks) for l in labels] metrics = [] for metric in self.model._metrics: # cut off padding value. if self.model._test_dataloader is not None and self._nranks > 1 \ and isinstance(self.model._test_dataloader, DataLoader): total_size = len(self.model._test_dataloader.dataset) samples = outputs[0].shape[0] current_count = self._merge_count.get(self.mode + '_total', 0) if current_count + samples >= total_size: outputs = [ o[:int(total_size - current_count)] for o in outputs ] labels = [ l[:int(total_size - current_count)] for l in labels ] self._merge_count[self.mode + '_total'] = 0 self._merge_count[self.mode + '_batch'] = int(total_size - current_count) else: self._merge_count[self.mode + '_total'] += samples self._merge_count[self.mode + '_batch'] = samples metric_outs = metric.add_metric_op(*(to_list(outputs) + to_list( labels))) m = metric.update(* [to_numpy(m) for m in to_list(metric_outs)]) metrics.append(m) # To be consistent with static graph # return empty loss if loss_function is None return ([to_numpy(l) for l in losses], metrics) \ if len(metrics) > 0 else [to_numpy(l) for l in losses] def test_batch(self, inputs): self.model.network.eval() self.mode = 'test' inputs = [to_variable(x) for x in to_list(inputs)] outputs = self.model.network.forward(*inputs) if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace): outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)] return [to_numpy(o) for o in to_list(outputs)] def parameters(self, *args, **kwargs): return self.model.network.parameters(*args, **kwargs) def save(self, path): params = self.model.network.state_dict() fluid.save_dygraph(params, path) if self.model._optimizer is None: return if self.model._optimizer.state_dict(): optim = self.model._optimizer.state_dict() fluid.save_dygraph(optim, path) def load(self, param_state_pairs, optim_state): # restore parameter states for param, state in param_state_pairs: param.set_value(state) # resotre optimizer states if not self.model._optimizer or not optim_state: return # If optimizer performs set_dict when state vars haven't been created, # which would happen when set_dict before minimize, the state would be # stored in optimizer._accumulators_holder and loaded lazily. # To contrive this when loading from static-graph saved states, extend # state dict to include keys named accoring to dygraph naming rules. # TODO: if len(self.model._optimizer._accumulators) > 0 converted_state = dict(optim_state) opt_unq_name = self.model._optimizer._name if opt_unq_name is None: opt_unq_name = '' opt_cls_name = self.model._optimizer.__class__.__name__ opt_name = opt_unq_name[:opt_unq_name.rfind("_")] # remove suffix idx param_names = [param.name for param in self.model.network.parameters()] for var_name, state_var in sorted( optim_state.items(), key=lambda x: len(x[0]), reverse=True): if var_name in ["@LR_DECAY_COUNTER@", "global_step"]: # NOTE: dygraph saved global_step is 1 larger than that in # static-graph, since the time of global_step to increase is # different. if var_name == "@LR_DECAY_COUNTER@": converted_state["global_step"] = np.array( converted_state.pop("@LR_DECAY_COUNTER@")) + 1 else: # moment and other accumulators # extend state dict to include promising dygraph names for param_name in param_names: if var_name.startswith(param_name + "_" + opt_name): # when init optimizer with name accum_name = var_name[len(param_name + "_" + opt_name + "_"):] elif var_name.startswith(param_name + "_") and opt_name == opt_cls_name: # when init optimizer without name accum_name = var_name[len(param_name + "_"):] else: continue # remove suffix idx accum_name = accum_name[:accum_name.rfind("_")] # state names always end with "_0" in dygraph because of the # unique optimizer._name dy_state_name = (param_name + "_" + opt_unq_name + "_" + accum_name + "_0") converted_state[dy_state_name] = state_var self.model._optimizer.set_dict(converted_state) class Model(object): """ An Model object is network with training and inference features. Dynamic graph and static graph are supported at the same time, switched by `fluid.enable_dygraph()`. The usage is as follows. But note, the switching between dynamic and static should be before instantiating a Model. The input description, i.e, hapi.Input, must be required for static graph. Args: network (fluid.dygraph.Layer): The network is an instance of fluid.dygraph.Layer. inputs (Input|list|dict|None): `inputs`, entry points of network, could be a Input layer, or lits of Input layers, or dict (name: Input), or None. For static graph, inputs must be set. For dynamic graph, it could be None. labels (Input|list|None): `labels`, entry points of network, could be a Input layer or lits of Input layers, or None. For static graph, if labels is required in loss_function, labels must be set. Otherwise, it could be None. Usage: .. code-block:: python import paddle.fluid as fluid import paddle.incubate.hapi as hapi class MyNet(fluid.dygraph.Layer): def __init__(self): super(MyNet, self).__init__() self._fc1 = fluid.dygraph.Linear(784, 200, act='softmax') def forward(self, x): y = self._fc1(x) return y device = hapi.set_device('gpu') # if use static graph, do not set fluid.enable_dygraph(device) # inputs and labels are not required for dynamic graph. input = hapi.Input('x', [None, 784], 'float32') label = hapi.Input('label', [None, 1], 'int64') model = hapi.Model(MyNet(), input, label) optim = fluid.optimizer.SGD(learning_rate=1e-3, parameter_list=model.parameters()) model.prepare(optim, hapi.loss.CrossEntropy(average=True), hapi.metrics.Accuracy()) mnist_data = hapi.datasets.MNIST(mode='train', chw_format=False) model.fit(mnist_data, epochs=2, batch_size=32, verbose=1) """ def __init__(self, network, inputs=None, labels=None): self.mode = 'train' self.network = network self._inputs = None self._labels = None self._loss_function = None self._loss_weights = None self._optimizer = None self._optimizer = None self._test_dataloader = None if not in_dygraph_mode(): if not isinstance(inputs, (list, dict, Input)): raise TypeError( "'inputs' must be list or dict in static graph mode") if inputs is None: self._inputs = [Input(name=n) \ for n in extract_args(self.network.forward) if n != 'self'] elif isinstance(input, dict): self._inputs = [inputs[n] \ for n in extract_args(self.network.forward) if n != 'self'] else: self._inputs = to_list(inputs) self._labels = to_list(labels) # init backend if fluid.in_dygraph_mode(): self._adapter = DynamicGraphAdapter(self) else: self._adapter = StaticGraphAdapter(self) def train_batch(self, inputs, labels=None): """ Run one training step on a batch of data. Args: inputs (list): A list of numpy.ndarray, each is a batch of input data. labels (list): A list of numpy.ndarray, each is a batch of input label. If has no labels, set None. Default is None. Returns: A list of scalar training loss if the model has no metrics, or a tuple (list of scalar loss, list of metrics) if the model set metrics. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid import paddle.incubate.hapi as hapi class MyNet(fluid.dygraph.Layer): def __init__(self): super(MyNet, self).__init__() self._fc = fluid.dygraph.Linear(784, 10, act='softmax') def forward(self, x): y = self._fc(x) return y device = hapi.set_device('gpu') fluid.enable_dygraph(device) input = hapi.Input('x', [None, 784], 'float32') label = hapi.Input('label', [None, 1], 'int64') model = hapi.Model(MyNet(), input, label) optim = fluid.optimizer.SGD(learning_rate=1e-3, parameter_list=model.parameters()) model.prepare(optim, hapi.loss.CrossEntropy(average=True)) data = np.random.random(size=(4,784)).astype(np.float32) label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64) loss = model.train_batch([data], [label]) print(loss) """ return self._adapter.train_batch(inputs, labels) def eval_batch(self, inputs, labels=None): """ Run one evaluating step on a batch of data. Args: inputs (list): A list of numpy.ndarray, each is a batch of input data. labels (list): A list of numpy.ndarray, each is a batch of input label. If has no labels, set None. Default is None. Returns: A list of scalar testing loss if the model has no metrics, or a tuple (list of scalar loss, list of metrics) if the model set metrics. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid import paddle.incubate.hapi as hapi class MyNet(fluid.dygraph.Layer): def __init__(self): super(MyNet, self).__init__() self._fc = fluid.dygraph.Linear(784, 10, act='softmax') def forward(self, x): y = self._fc(x) return y device = hapi.set_device('gpu') fluid.enable_dygraph(device) input = hapi.Input('x', [None, 784], 'float32') label = hapi.Input('label', [None, 1], 'int64') model = hapi.Model(MyNet(), input, label) optim = fluid.optimizer.SGD(learning_rate=1e-3, parameter_list=model.parameters()) model.prepare(optim, hapi.loss.CrossEntropy(average=True)) data = np.random.random(size=(4,784)).astype(np.float32) label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64) loss = model.eval_batch([data], [label]) print(loss) """ return self._adapter.eval_batch(inputs, labels) def test_batch(self, inputs): """ Run one testing step on a batch of data. Args: inputs (list): A list of numpy.ndarray, each is a batch of input data. Returns: A list of numpy.ndarray of predictions, that is the outputs of Model forward. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid import paddle.incubate.hapi as hapi class MyNet(fluid.dygraph.Layer): def __init__(self): super(MyNet, self).__init__() self._fc = fluid.dygraph.Linear(784, 1, act='softmax') def forward(self, x): y = self._fc(x) return y device = hapi.set_device('gpu') fluid.enable_dygraph(device) model = hapi.Model(MyNet()) model.prepare() data = np.random.random(size=(4,784)).astype(np.float32) out = model.eval_batch([data]) print(out) """ return self._adapter.test_batch(inputs) def save(self, path): """ This function saves parameters, optimizer infomation to path. The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams". The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated). This function will silently overwrite existing file at the target location. Args: path (str): The file prefix to save model. The format is 'dirname/file_prefix' or 'file_prefix'. if empty str. A exception will be raised. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid import paddle.incubate.hapi as hapi class MyNet(fluid.dygraph.Layer): def __init__(self): super(MyNet, self).__init__() self._fc = fluid.dygraph.Linear(784, 1, act='softmax') def forward(self, x): y = self._fc(x) return y device = hapi.set_device('cpu') fluid.enable_dygraph(device) model = hapi.Model(MyNet()) model.save('checkpoint/test') """ if ParallelEnv().local_rank == 0: self._adapter.save(path) def load(self, path, skip_mismatch=False, reset_optimizer=False): """ Load from files storing the model states and optimizer states. The file for optimizer states is not necessary if no need to restore the optimizer. NOTE: parameters are retrieved out from the file storing model states accoring to their structured names. For fine-tuning or transfer-learning models where some of the layers have changed, keep parameters needed to restore have same structured names in the pre-trained model and fine-tuning model. Args: path (str): The prefix of files storing the model states and optimizer states. The files would be `path.pdparams` and `path.pdopt` separately, and the latter is not necessary when no need to restore. skip_mismatch (bool): Whether to skip the loading of mismatch parameter or raise an error when mismatch happens (not found the parameter in file storing model states of or receives a mismatch shape). reset_optimizer (bool): If True, ignore the providing file storing optimizer states and initialize optimizer states from scratch. Otherwise, restore optimizer states from `path.pdopt` if a optimizer has been set to the model. Default False. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid import paddle.incubate.hapi as hapi class MyNet(fluid.dygraph.Layer): def __init__(self): super(MyNet, self).__init__() self._fc = fluid.dygraph.Linear(784, 1, act='softmax') def forward(self, x): y = self._fc(x) return y device = hapi.set_device('cpu') fluid.enable_dygraph(device) model = hapi.Model(MyNet()) model.load('checkpoint/test') """ def _load_state_from_path(path): if not os.path.exists(path): return with open(path, 'rb') as f: return pickle.load(f) if six.PY2 else pickle.load( f, encoding='latin1') def _check_match(key, param): state = param_state.get(key, None) if state is None: raise ValueError( "{} is not found in the providing file.".format(key)) if list(state.shape) != list(param.shape): raise ValueError( "{} receives a shape {}, but the expected shape is {}.". format(key, list(state.shape), list(param.shape))) return param, state def _strip_postfix(path): path, ext = os.path.splitext(path) assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \ "Unknown postfix {} from weights".format(ext) return path path = _strip_postfix(path) param_state = _load_state_from_path(path + ".pdparams") assert param_state, "Failed to load parameters, please check path." matched_param_state = [] for key, param in self.network.state_dict().items(): try: match_res = _check_match(key, param) except ValueError as err: if skip_mismatch: warnings.warn( ("Skip loading for {}. ".format(key) + str(err))) # reset optimizer when mismatch happens reset_optimizer = True else: raise err matched_param_state.append(match_res) optim_state = None if reset_optimizer else _load_state_from_path( path + ".pdopt") return self._adapter.load(matched_param_state, optim_state) def parameters(self, *args, **kwargs): """ Returns a list of parameters of the model. Returns: A list of Parameter in static graph. A list of ParamBase in dynamic graph. Examples: .. code-block:: python import paddle.fluid as fluid from paddle.incubate.hapi import Model class MyNet(fluid.dygraph.Layer): def __init__(self): super(MyNet, self).__init__() self._fc = fluid.dygraph.Linear(20, 10, act='softmax') def forward(self, x): y = self._fc(x) return y fluid.enable_dygraph() model = Model(MyNet()) params = model.parameters() """ return self._adapter.parameters() def prepare(self, optimizer=None, loss_function=None, metrics=None): """ Configures the model before runing. Args: optimizer (Optimizer|None): Optimizer must be set in training and should be a Optimizer instance. It can be None in eval and test mode. loss_function (Loss|None): Loss function must be set in training and should be a Loss instance. It can be None when there is no loss. metrics (Metric|list of Metric|None): If metrics is set, all metrics will be calculated and output in train/eval mode. Returns: None """ self._place = _get_device() if isinstance(self._place, fluid.CUDAPlace): global _parallel_context_initialized if ParallelEnv().nranks > 1 and not _parallel_context_initialized: if fluid.in_dygraph_mode(): main_prog_seed = fluid.default_main_program().random_seed startup_prog_seed = fluid.default_startup_program( ).random_seed fluid.disable_dygraph() fluid.enable_dygraph(self._place) # enable_dygraph would create and switch to a new program, # thus also copy seed to the new program fluid.default_main_program().random_seed = main_prog_seed fluid.default_startup_program( ).random_seed = startup_prog_seed fluid.dygraph.parallel.prepare_context() else: prepare_distributed_context(self._place) _parallel_context_initialized = True self._optimizer = optimizer if loss_function: if not isinstance(loss_function, Loss): raise TypeError("'loss_function' must be sub classes of 'Loss'") self._loss_function = loss_function metrics = metrics or [] for metric in to_list(metrics): assert isinstance(metric, Metric), \ "{} is not sub class of Metric".format( metric.__class__.__name__) self._metrics = to_list(metrics) if not in_dygraph_mode(): self._adapter.prepare() def fit( self, train_data=None, eval_data=None, batch_size=1, epochs=1, eval_freq=1, log_freq=10, save_dir=None, save_freq=1, verbose=2, drop_last=False, shuffle=True, num_workers=0, callbacks=None, ): """ Trains the model for a fixed number of epochs. If `eval_data` is set, evaluation will be done at the end of each epoch. Args: train_data (Dataset|DataLoader): An iterable data loader is used for train. An instance of paddle paddle.io.Dataset or paddle.io.Dataloader is recomended. Default: None. eval_data (Dataset|DataLoader): An iterable data loader is used for evaluation at the end of epoch. If None, will not do evaluation. An instance of paddle.io.Dataset or paddle.io.Dataloader is recomended. Default: None. batch_size (int): Integer number. The batch size of train_data and eval_data. When train_data and eval_data are both the instance of Dataloader, this parameter will be ignored. Default: 1. epochs (int): Integer number. The number of epochs to train the model. Default: 1. eval_freq (int): The frequency, in number of epochs, an evalutation is performed. Default: 1. log_freq (int): The frequency, in number of steps, the training logs are printed. Default: 10. save_dir(str|None): The directory to save checkpoint during training. If None, will not save checkpoint. Default: None. save_freq (int): The frequency, in number of epochs, to save checkpoint. Default: 1. verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent, 1 = progress bar, 2 = one line per epoch. Default: 2. drop_last (bool): Whether drop the last incomplete batch of train_data when dataset size is not divisible by the batch size. When train_data is an instance of Dataloader, this parameter will be ignored. Default: False. shuffle (bool): Whther to shuffle train_data. When train_data is an instance of Dataloader, this parameter will be ignored. Default: True. num_workers (int): The number of subprocess to load data, 0 for no subprocess used and loading data in main process. When train_data and eval_data are both the instance of Dataloader, this parameter will be ignored. Default: 0. callbacks (Callback|None): A list of `Callback` instances to apply during training. If None, `ProgBarLogger` and `ModelCheckpoint` are automatically inserted. Default: None. Returns: None Examples: 1. An example use Dataset and set btch size, shuffle in fit. How to make a batch is done internally. .. code-block:: python import paddle.fluid as fluid import paddle.incubate.hapi as hapi dynamic = True device = hapi.set_device('gpu') fluid.enable_dygraph(device) if dynamic else None train_dataset = hapi.datasets.MNIST(mode='train') val_dataset = hapi.datasets.MNIST(mode='test') input = hapi.Input('image', [None, 1, 28, 28], 'float32') label = hapi.Input('label', [None, 1], 'int64') model = hapi.Model(hapi.vision.LeNet(), input, label) optim = fluid.optimizer.Adam( learning_rate=0.001, parameter_list=model.parameters()) model.prepare( optim, hapi.loss.CrossEntropy(), hapi.metrics.Accuracy(topk=(1, 2))) model.fit(train_dataset, val_dataset, epochs=2, batch_size=64, save_dir='mnist_checkpoint') 2. An example use DataLoader, batch size and shuffle is set in DataLoader. .. code-block:: python import paddle.fluid as fluid import paddle.incubate.hapi as hapi dynamic = True device = hapi.set_device('gpu') fluid.enable_dygraph(device) if dynamic else None train_dataset = hapi.datasets.MNIST(mode='train') train_loader = fluid.io.DataLoader(train_dataset, places=device, batch_size=64) val_dataset = hapi.datasets.MNIST(mode='test') val_loader = fluid.io.DataLoader(val_dataset, places=device, batch_size=64) input = hapi.Input('image', [None, 1, 28, 28], 'float32') label = hapi.Input('label', [None, 1], 'int64') model = hapi.Model(hapi.vision.LeNet(), input, label) optim = fluid.optimizer.Adam( learning_rate=0.001, parameter_list=model.parameters()) model.prepare( optim, hapi.loss.CrossEntropy(), hapi.metrics.Accuracy(topk=(1, 2))) model.fit(train_loader, val_loader, epochs=2, save_dir='mnist_checkpoint') """ assert train_data is not None, \ "train_data must be given!" if isinstance(train_data, Dataset): train_sampler = DistributedBatchSampler( train_data, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last) train_loader = DataLoader( train_data, batch_sampler=train_sampler, places=self._place, num_workers=num_workers, return_list=True) else: train_loader = train_data if eval_data is not None and isinstance(eval_data, Dataset): eval_sampler = DistributedBatchSampler( eval_data, batch_size=batch_size) eval_loader = DataLoader( eval_data, batch_sampler=eval_sampler, places=self._place, num_workers=num_workers, return_list=True) elif eval_data is not None: eval_loader = eval_data else: eval_loader = None do_eval = eval_loader is not None self._test_dataloader = eval_loader steps = self._len_data_loader(train_loader) cbks = config_callbacks( callbacks, model=self, epochs=epochs, steps=steps, log_freq=log_freq, save_freq=save_freq, save_dir=save_dir, verbose=verbose, metrics=self._metrics_name(), ) cbks.on_begin('train') for epoch in range(epochs): cbks.on_epoch_begin(epoch) logs = self._run_one_epoch(train_loader, cbks, 'train') cbks.on_epoch_end(epoch, logs) if do_eval and epoch % eval_freq == 0: eval_steps = self._len_data_loader(eval_loader) cbks.on_begin('eval', { 'steps': eval_steps, 'metrics': self._metrics_name() }) eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval') cbks.on_end('eval', eval_logs) cbks.on_end('train', logs) self._test_dataloader = None def evaluate( self, eval_data, batch_size=1, log_freq=10, verbose=2, num_workers=0, callbacks=None, ): """ Evaluate the loss and metrics of the model on input dataset. Args: eval_data (Dataset|DataLoader): An iterable data loader is used for evaluation. An instance of paddle.io.Dataset or paddle.io.Dataloader is recomended. batch_size (int): Integer number. The batch size of train_data and eval_data. When eval_data is the instance of Dataloader, this argument will be ignored. Default: 1. log_freq (int): The frequency, in number of steps, the eval logs are printed. Default: 10. verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent, 1 = progress bar, 2 = one line per epoch. Default: 2. num_workers (int): The number of subprocess to load data, 0 for no subprocess used and loading data in main process. When train_data and eval_data are both the instance of Dataloader, this parameter will be ignored. Default: 0. callbacks (Callback|None): A list of `Callback` instances to apply during training. If None, `ProgBarLogger` and `ModelCheckpoint` are automatically inserted. Default: None. Returns: dict: Result of metric. The key is the names of Metric, value is a scalar or numpy.array. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.incubate.hapi as hapi # declarative mode val_dataset = hapi.datasets.MNIST(mode='test') input = hapi.Input('image', [-1, 1, 28, 28], 'float32') label = hapi.Input('label', [None, 1], 'int64') model = hapi.Model(hapi.vision.LeNet(), input, label) model.prepare(metrics=hapi.metrics.Accuracy()) result = model.evaluate(val_dataset, batch_size=64) print(result) # imperative mode fluid.enable_dygraph() model = hapi.Model(hapi.vision.LeNet()) model.prepare(metrics=hapi.metrics.Accuracy()) result = model.evaluate(val_dataset, batch_size=64) print(result) """ if eval_data is not None and isinstance(eval_data, Dataset): eval_sampler = DistributedBatchSampler( eval_data, batch_size=batch_size) eval_loader = DataLoader( eval_data, batch_sampler=eval_sampler, places=self._place, num_workers=num_workers, return_list=True) else: eval_loader = eval_data self._test_dataloader = eval_loader cbks = config_callbacks( callbacks, model=self, log_freq=log_freq, verbose=verbose, metrics=self._metrics_name(), ) eval_steps = self._len_data_loader(eval_loader) cbks.on_begin('eval', {'steps': eval_steps, 'metrics': self._metrics_name()}) logs = self._run_one_epoch(eval_loader, cbks, 'eval') cbks.on_end('eval', logs) self._test_dataloader = None eval_result = {} for k in self._metrics_name(): eval_result[k] = logs[k] return eval_result def predict(self, test_data, batch_size=1, num_workers=0, stack_outputs=False, callbacks=None): """ Compute the output predictions on testing data. Args: test_data (Dataset|DataLoader): An iterable data loader is used for predict. An instance of paddle.io.Dataset or paddle.io.Dataloader is recomended. batch_size (int): Integer number. The batch size of train_data and eval_data. When train_data and eval_data are both the instance of Dataloader, this argument will be ignored. Default: 1. num_workers (int): The number of subprocess to load data, 0 for no subprocess used and loading data in main process. When train_data and eval_data are both the instance of Dataloader, this argument will be ignored. Default: 0. stack_output (bool): Whether stack output field like a batch, as for an output filed of a sample is in shape [X, Y], test_data contains N samples, predict output field will be in shape [N, X, Y] if stack_output is True, and will be a length N list in shape [[X, Y], [X, Y], ....[X, Y]] if stack_outputs is False. stack_outputs as False is used for LoDTensor output situation, it is recommended set as True if outputs contains no LoDTensor. Default: False. Returns: list: output of models. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid import paddle.incubate.hapi as hapi class MnistDataset(hapi.datasets.MNIST): def __init__(self, mode, return_label=True): super(MnistDataset, self).__init__(mode=mode) self.return_label = return_label def __getitem__(self, idx): img = np.reshape(self.images[idx], [1, 28, 28]) if self.return_label: return img, np.array(self.labels[idx]).astype('int64') return img, def __len__(self): return len(self.images) test_dataset = MnistDataset(mode='test', return_label=False) # declarative mode input = hapi.Input('image', [-1, 1, 28, 28], 'float32') model = hapi.Model(hapi.vision.LeNet(), input) model.prepare() result = model.predict(test_dataset, batch_size=64) print(len(result[0]), result[0][0].shape) # imperative mode device = hapi.set_device('cpu') fluid.enable_dygraph(device) model = hapi.Model(hapi.vision.LeNet()) model.prepare() result = model.predict(test_dataset, batch_size=64) print(len(result[0]), result[0][0].shape) """ if test_data is not None and isinstance(test_data, Dataset): test_sampler = DistributedBatchSampler( test_data, batch_size=batch_size) test_loader = DataLoader( test_data, batch_sampler=test_sampler, places=self._place, num_workers=num_workers, return_list=True) else: test_loader = test_data self._test_dataloader = test_loader cbks = config_callbacks(callbacks, model=self, verbose=1) test_steps = self._len_data_loader(test_loader) logs = {'steps': test_steps} cbks.on_begin('test', logs) outputs = [] logs, outputs = self._run_one_epoch(test_loader, cbks, 'test') outputs = list(zip(*outputs)) # NOTE: for lod tensor output, we should not stack outputs # for stacking may lose its detail info if stack_outputs: outputs = [np.vstack(outs) for outs in outputs] self._test_dataloader = None cbks.on_end('test', logs) return outputs def save_inference_model(self, save_dir, model_filename=None, params_filename=None, model_only=False): """ Save inference model must in static mode. Args: save_dir (str): The directory path to save the inference model. model_filename (str|None): The name of file to save the inference model itself. If is set None, a default filename :code:`__model__` will be used. params_filename (str|None): The name of file to save all related parameters. If it is set None, parameters will be saved in separate files . model_only (bool): If True, It will save inference model only, and do not save parameters. Default: False. Returns: list: The fetch variables' name list Examples: .. code-block:: python import paddle.fluid as fluid import paddle.incubate.hapi as hapi input = hapi.Input('image', [-1, 1, 28, 28], 'float32') model = hapi.Model(hapi.vision.LeNet(), input) model.prepare() model.save_inference_model('inference_model') """ assert not fluid.in_dygraph_mode( ), 'Save inference model must in static mode!' prog = self._adapter._progs.get('test', None) assert prog, \ "Model is not ready, please call `model.prepare()` first" infer_prog = prog.clone(for_test=True) input_names = [v.name for v in self._adapter._input_vars['test']] endpoints = self._adapter._endpoints['test']['output'] return fluid.io.save_inference_model( save_dir, input_names, endpoints, self._adapter._executor, main_program=infer_prog, model_filename=model_filename, params_filename=params_filename, program_only=model_only) def _run_one_epoch(self, data_loader, callbacks, mode, logs={}): outputs = [] for step, data in enumerate(data_loader): # data might come from different types of data_loader and have # different format, as following: # 1. DataLoader in static graph: # [[input1, input2, ..., label1, lable2, ...]] # 2. DataLoader in dygraph # [input1, input2, ..., label1, lable2, ...] # 3. custumed iterator yield concated inputs and labels: # [input1, input2, ..., label1, lable2, ...] # 4. custumed iterator yield seperated inputs and labels: # ([input1, input2, ...], [label1, lable2, ...]) # To handle all of these, flatten (nested) list to list. data = flatten(data) # LoDTensor.shape is callable, where LoDTensor comes from # DataLoader in static graph batch_size = data[0].shape()[0] if callable(data[ 0].shape) else data[0].shape[0] callbacks.on_batch_begin(mode, step, logs) if mode != 'test': outs = getattr(self, mode + '_batch')(data[:len(self._inputs)], data[len(self._inputs):]) # losses loss = outs[0] if self._metrics else outs metrics = [[l[0] for l in loss]] # metrics for metric in self._metrics: res = metric.accumulate() metrics.extend(to_list(res)) assert len(self._metrics_name()) == len(metrics) for k, v in zip(self._metrics_name(), metrics): logs[k] = v else: if self._inputs is not None: outs = getattr(self, mode + '_batch')(data[:len(self._inputs)]) else: outs = getattr(self, mode + '_batch')(data) outputs.append(outs) logs['step'] = step if mode == 'train' or self._adapter._merge_count.get( mode + '_batch', 0) <= 0: logs['batch_size'] = batch_size * ParallelEnv().nranks else: logs['batch_size'] = self._adapter._merge_count[mode + '_batch'] callbacks.on_batch_end(mode, step, logs) self._reset_metrics() if mode == 'test': return logs, outputs return logs def _reset_metrics(self): for metric in self._metrics: metric.reset() def _metrics_name(self): metrics_name = ['loss'] for m in self._metrics: metrics_name.extend(to_list(m.name())) return metrics_name def _len_data_loader(self, data_loader): try: steps = len(data_loader) except Exception: steps = None return steps