# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .tensor.linalg import cholesky # noqa: F401 from .tensor.linalg import norm # noqa: F401 from .tensor.linalg import eig # noqa: F401 from .tensor.linalg import cond # noqa: F401 from .tensor.linalg import matrix_power # noqa: F401 from .tensor.linalg import solve # noqa: F401 from .tensor import inverse as inv # noqa: F401 from .tensor.linalg import eigvals # noqa: F401 from .tensor.linalg import multi_dot # noqa: F401 from .tensor.linalg import matrix_rank from .tensor.linalg import svd from .tensor.linalg import eigvalsh from .tensor.linalg import qr from .tensor.linalg import eigh # noqa: F401 from .tensor.linalg import det from .tensor.linalg import slogdet from .tensor.linalg import pinv __all__ = [ 'cholesky', #noqa 'norm', 'cond', 'inv', 'eig', 'eigvals', 'multi_dot', 'matrix_rank', 'svd', 'qr', 'matrix_power', 'det', 'slogdet', 'eigh', 'eigvalsh', 'pinv', 'solve' ]