/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /** * This test is about floating point calculation exception. * Paddle catches FE_INVALID, FE DIVBYZERO and FE_OVERFLOW exceptions. * * Some exceptions occur in the middle of a set of formulas, * that can be circumvented by some tricks. * For example, * calculate tanh * b = 2.0 / (1.0 + exp(-2 * a)) - 1.0 * * If the result of (-2 * a) is too large, * a FE_OVERFLOW exception occurs when calculating exp. * But the result of tanh is no overflow problem, * so we can add some tricks to prevent exp calculate an excessive value. * */ #include #include "paddle/legacy/math/Matrix.h" #include "paddle/legacy/utils/Common.h" using namespace paddle; // NOLINT void SetTensorValue(Matrix& matrix, real value) { int height = matrix.getHeight(); int width = matrix.getWidth(); int stride = matrix.getStride(); real* data = matrix.getData(); for (int i = 0; i < height; i++) { int j = rand() % width; // NOLINT if (typeid(matrix) == typeid(CpuMatrix)) { data[i * stride + j] = value; } else if (typeid(matrix) == typeid(GpuMatrix)) { hl_memcpy(&data[i * stride + j], &value, sizeof(real)); } else { LOG(FATAL) << "should not reach here"; } } } template void testTanh(real illegal) { MatrixPtr A = std::make_shared(10, 10); MatrixPtr B = std::make_shared(10, 10); A->randomizeUniform(); B->randomizeUniform(); SetTensorValue(*A, illegal); A->tanh(*B); } template void testSigmoid(real illegal) { MatrixPtr A = std::make_shared(10, 10); MatrixPtr B = std::make_shared(10, 10); A->randomizeUniform(); B->randomizeUniform(); SetTensorValue(*A, illegal); A->sigmoid(*B); } TEST(fp, overflow) { for (auto illegal : {-90.0, 90.0}) { LOG(INFO) << " illegal=" << illegal; testTanh(illegal); testSigmoid(illegal); } } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); feenableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW); return RUN_ALL_TESTS(); }