/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #undef PADDLE_DISABLE_TIMER #include "paddle/legacy/utils/Stat.h" #include "paddle/legacy/gserver/layers/MultinomialSampler.h" #include "paddle/legacy/utils/Util.h" using namespace paddle; // NOLINT using namespace std; // NOLINT class MultinomialSamplerTester : public MultinomialSampler { public: MultinomialSamplerTester(real* prob, int size) : MultinomialSampler(prob, size) {} template int testGen(Rand1 rand1) { return gen1(rand1); } }; TEST(MultinomialSampler, gen) { int numGrids = 1024 * 1024; int size = 1024 * 4; default_random_engine reng; for (size_t iter = 0; iter < 256; ++iter) { uniform_int_distribution rand(1, numGrids / size * 1.8); vector prob; int sum = 0; for (int i = 0; i < size; ++i) { prob.push_back(rand(reng)); sum += prob.back(); } CHECK_LE(sum, numGrids); prob.back() += numGrids - sum; vector counts(size); MultinomialSamplerTester sampler(&prob[0], size); counts.assign(size, 0); { double s = (double)size / (double)numGrids; REGISTER_TIMER("MultinomialSampler"); for (double i = 0; i < numGrids; ++i) { int ret = sampler.testGen([i, s]() { return s * i; }); if (ret < 0 || ret >= size) { EXPECT_GE(ret, 0); EXPECT_LT(ret, size); break; } ++counts[ret]; } } for (int i = 0; i < size; ++i) { if (prob[i] != counts[i]) { EXPECT_EQ(prob[i], counts[i]); LOG(INFO) << iter; break; } } } } void benchmarkRandom() { int n = 1024 * 1024; int sum; double sum1; sum = 0; unsigned int seed = 1; { REGISTER_TIMER("crand"); for (int i = 0; i < n; ++i) { sum += rand_r(&seed) % 1000; } } LOG(INFO) << "sum=" << sum; default_random_engine reng; uniform_int_distribution rand(1, 1000); sum = 0; { REGISTER_TIMER("stdrand"); for (int i = 0; i < n; ++i) { sum += rand(reng); } } LOG(INFO) << "sum=" << sum; sum = 0; { REGISTER_TIMER("default_random_engine"); for (int i = 0; i < n; ++i) { sum += reng(); } } LOG(INFO) << "sum=" << sum; uniform_real_distribution rand1(0, 1); sum1 = 0; { REGISTER_TIMER("stdrand1"); for (int i = 0; i < n; ++i) { sum1 += rand1(reng); } } LOG(INFO) << "sum1=" << sum1; sum1 = 0; { real a = 1.0f / (real)RAND_MAX; REGISTER_TIMER("crand1"); for (int i = 0; i < n; ++i) { sum1 += a * rand_r(&seed); } } LOG(INFO) << "sum1=" << sum1; } int main(int argc, char** argv) { initMain(argc, argv); testing::InitGoogleTest(&argc, argv); benchmarkRandom(); int ret = RUN_ALL_TESTS(); globalStat.printSegTimerStatus(); return ret; }