/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "MKLDNNFcLayer.h" #include "paddle/legacy/utils/Logging.h" using namespace mkldnn; // NOLINT typedef memory::format format; namespace paddle { REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer); bool MKLDNNFcLayer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) { if (!MKLDNNLayer::init(layerMap, parameterMap)) { return false; } CHECK_EQ(inputLayers_.size(), 1UL) << "Only support one input layer yet"; CHECK_EQ(inputLayers_.size(), parameters_.size()); CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet"; // output size, cat not be changed oc_ = getSize(); oh_ = 1; ow_ = 1; ih_ = 1; iw_ = 1; // input size can not change in FC iLayerSize_ = inputLayers_[0]->getSize(); CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_); // create weight weight_ = std::unique_ptr(new Weight(oc_, iLayerSize_, parameters_[0], 0)); // create biases if (biasParameter_.get() != NULL) { biases_ = std::unique_ptr(new Weight(1, oc_, biasParameter_, 0)); } return true; } void MKLDNNFcLayer::convertWeightsFromPaddle() { if (hasInitedWgt_) { return; } CHECK(wgtVal_) << "should have been initialized"; auto targetDim = wgtVal_->getDims(); auto srcFmt = targetDim.size() == 2 ? format::io : format::ihwo; wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim); hasInitedWgt_ = true; } void MKLDNNFcLayer::convertWeightsToPaddle() { CHECK(wgtVal_) << "should have been initialized"; auto targetDim = wgtVal_->getDims(); auto dstFmt = targetDim.size() == 2 ? format::io : format::ihwo; wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim); } void MKLDNNFcLayer::reshape( int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { reshapeInput(bs, ih, iw); CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize()); ic = iLayerSize_ / (ih * iw); CHECK_EQ(size_t(ic * ih * iw), iLayerSize_) << "not divisible"; CHECK_EQ(size_t(oc), getSize()); reshapeOutput(oh, ow); resizeOutput(bs, oc); } void MKLDNNFcLayer::resetFwd(std::vector& pipeline, std::vector& inputs, MKLDNNMatrixPtr& out) { resetFwdBuffers(inputs[0], wgtVal_, biasVal_, out); resetFwdPD(fwdPD_, inputs[0], wgtVal_, biasVal_, out); resetFwdPipeline(pipeline, fwdPD_, inputs[0], wgtVal_, biasVal_, out); } void MKLDNNFcLayer::resetBwd(std::vector& pipeline, std::vector& inputs, MKLDNNMatrixPtr& out) { std::shared_ptr bwdWgtPD; std::shared_ptr bwdDataPD; resetBwdBuffers(inputs[0], wgtGrad_, biasGrad_, out); resetBwdWgtPD(bwdWgtPD, wgtGrad_, biasGrad_, out); resetBwdDataPD(bwdDataPD, inputs[0], out); resetBwdPipeline( pipeline, bwdWgtPD, bwdDataPD, inputs[0], wgtGrad_, biasGrad_, out); } void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) { weight_->getParameterPtr()->incUpdate(callback); if (biases_ && biases_->getWGrad()) { biases_->getParameterPtr()->incUpdate(callback); } } void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { resetInValue(in); CHECK(in); in->downSpatial(); auto outPD = MKLDNNMatrix::createPrimitiveDesc({bs_, oc_}, format::nc, engine_); resetOutValue(out, outPD); format wgtFmt = format::oihw; if (in->getFormat() == format::nChw8c) { wgtFmt = format::oIhw8i; } else if (in->getFormat() == format::nChw16c) { wgtFmt = format::oIhw16i; } auto wgtPD = MKLDNNMatrix::createPrimitiveDesc({oc_, ic_, ih_, iw_}, wgtFmt, engine_); resetWithMatrix(wgt, weight_->getW(), wgtPD); wgt->downSpatial(); if (biases_ && biases_->getW()) { auto biasPD = MKLDNNMatrix::createPrimitiveDesc({oc_}, format::x, engine_); resetWithMatrix(bias, biases_->getW(), biasPD); } else { bias = nullptr; } } void MKLDNNFcLayer::resetFwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr in, MKLDNNMatrixPtr wgt, MKLDNNMatrixPtr bias, MKLDNNMatrixPtr out) { CHECK(in); CHECK(wgt); CHECK(out); prop_kind pk = prop_kind::forward; fc_fwd::desc fwdDesc = bias != nullptr ? fc_fwd::desc(pk, in->getMemoryDesc(), wgt->getMemoryDesc(), bias->getMemoryDesc(), out->getMemoryDesc()) : fc_fwd::desc(pk, in->getMemoryDesc(), wgt->getMemoryDesc(), out->getMemoryDesc()); pd.reset(new fc_fwd::primitive_desc(fwdDesc, engine_)); } void MKLDNNFcLayer::resetFwdPipeline( std::vector& pipeline, std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { if (bias) { fwd_.reset(new fc_fwd(*pd, *in, *wgt, *bias, *out)); } else { fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out)); } pipeline.push_back(*fwd_); } void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { CHECK(inVals_[0] && outVal_); resetOutGrad(out, outVal_->getPrimitiveDesc()); resetInGrad(in, inVals_[0]->getPrimitiveDesc()); CHECK(wgtVal_); resetWithMatrix(wgt, weight_->getWGrad(), wgtVal_->getPrimitiveDesc()); if (biasVal_) { resetWithMatrix(bias, biases_->getWGrad(), biasVal_->getPrimitiveDesc()); } else { bias = nullptr; } } void MKLDNNFcLayer::resetBwdWgtPD( std::shared_ptr& pd, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { CHECK(inVals_[0]); fc_bwdWgt::desc bwdWgtDesc = bias ? fc_bwdWgt::desc(inVals_[0]->getMemoryDesc(), wgt->getMemoryDesc(), bias->getMemoryDesc(), out->getMemoryDesc()) : fc_bwdWgt::desc(inVals_[0]->getMemoryDesc(), wgt->getMemoryDesc(), out->getMemoryDesc()); pd.reset(new fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_)); } void MKLDNNFcLayer::resetBwdDataPD( std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { pd = nullptr; if (in == nullptr) { return; } CHECK(wgtVal_); fc_bwdData::desc bwdDataDesc = fc_bwdData::desc( in->getMemoryDesc(), wgtVal_->getMemoryDesc(), out->getMemoryDesc()); pd.reset(new fc_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_)); } void MKLDNNFcLayer::resetBwdPipeline( std::vector& pipeline, std::shared_ptr& bwdWgtPD, std::shared_ptr& bwdDataPD, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { CHECK(inVals_[0]); if (bias) { bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVals_[0], *out, *wgt, *bias)); } else { bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVals_[0], *out, *wgt)); } pipeline.push_back(*bwdWgt_); if (bwdDataPD == nullptr) { return; } CHECK(wgtVal_) << "Should have weight memory"; bwdData_.reset(new fc_bwdData(*bwdDataPD, *out, *wgtVal_, *in)); pipeline.push_back(*bwdData_); } } // namespace paddle