# copyright (c) 2022 paddlepaddle authors. all rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.nn.functional as F from paddle.io import Dataset from paddle.nn import Conv2D, Linear, ReLU, Sequential from paddle.quantization import QAT, QuantConfig from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver from paddle.quantization.quanters.abs_max import ( FakeQuanterWithAbsMaxObserverLayer, ) class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): data = np.random.random([3, 32, 32]).astype('float32') return data def __len__(self): return self.num_samples class Model(paddle.nn.Layer): def __init__(self, num_classes=10): super(Model, self).__init__() self.num_classes = num_classes self.features = Sequential( Conv2D(3, 6, 3, stride=1, padding=1), ReLU(), paddle.nn.MaxPool2D(2, stride=2), Conv2D(6, 16, 5, stride=1, padding=0), ReLU(), paddle.nn.MaxPool2D(2, stride=2), ) if num_classes > 0: self.fc = Sequential( Linear(576, 120), Linear(120, 84), Linear(84, 10) ) def forward(self, inputs): x = self.features(inputs) if self.num_classes > 0: x = paddle.flatten(x, 1) x = self.fc(x) out = F.relu(x) return out class TestQAT(unittest.TestCase): def test_qat(self): nums_batch = 100 batch_size = 32 dataset = RandomDataset(nums_batch * batch_size) loader = paddle.io.DataLoader( dataset, batch_size=batch_size, shuffle=False, drop_last=True, num_workers=0, ) model = Model() quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.9) q_config = QuantConfig(activation=quanter, weight=quanter) qat = QAT(q_config) print(model) quant_model = qat.quantize(model) print(quant_model) quanter_count = 0 for _layer in quant_model.sublayers(True): if isinstance(_layer, FakeQuanterWithAbsMaxObserverLayer): quanter_count += 1 self.assertEqual(quanter_count, 14) for _, data in enumerate(loader): out = quant_model(data) out.backward() if __name__ == '__main__': unittest.main()