# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright PaddlePaddle contributors. All Rights Reservedd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import math import paddle.dataset as dataset import paddle.v2 as paddle def wordemb(inlayer): wordemb = paddle.layer.table_projection( input=inlayer, size=5, param_attr=paddle.attr.Param( name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0)) return wordemb def train(): word_dict = dataset.imikolov.build_dict() dict_size = len(word_dict) # Every layer takes integer value of range [0, dict_size) firstword = paddle.layer.data( name="firstw", type=paddle.data_type.integer_value(dict_size)) secondword = paddle.layer.data( name="secondw", type=paddle.data_type.integer_value(dict_size)) thirdword = paddle.layer.data( name="thirdw", type=paddle.data_type.integer_value(dict_size)) fourthword = paddle.layer.data( name="fourthw", type=paddle.data_type.integer_value(dict_size)) nextword = paddle.layer.data( name="fifthw", type=paddle.data_type.integer_value(dict_size)) Efirst = wordemb(firstword) Esecond = wordemb(secondword) Ethird = wordemb(thirdword) Efourth = wordemb(fourthword) contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth]) hidden1 = paddle.layer.fc(name="fc1", input=contextemb, size=128, act=paddle.activation.Sigmoid(), layer_attr=paddle.attr.Extra(drop_rate=0.5), bias_attr=paddle.attr.Param(learning_rate=2), param_attr=paddle.attr.Param( initial_std=1. / math.sqrt(5 * 8), learning_rate=1, l2_rate=6e-4)) predictword = paddle.layer.fc(input=hidden1, size=dict_size, bias_attr=paddle.attr.Param(learning_rate=2), act=paddle.activation.Softmax()) return paddle.layer.classification_cost(input=predictword, label=nextword) class TestParamConfOrder(unittest.TestCase): def test_param_conf_order(self): paddle.init() cost = train() parameters = paddle.parameters.create(cost) adagrad = paddle.optimizer.AdaGrad( learning_rate=3e-3, regularization=paddle.optimizer.L2Regularization(rate=8e-4)) trainer = paddle.trainer.SGD(cost, parameters, adagrad) for p in trainer.get_topology_proto().parameters: if p.name == "_fc1.w0": self.assertEqual(p.decay_rate, 6e-4) else: self.assertEqual(p.decay_rate, 8e-4) if __name__ == '__main__': unittest.main()