/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/operators/fake_quantize_op.h" #include "paddle/fluid/platform/cuda_primitives.h" namespace paddle { namespace operators { template __global__ void FindAbsMaxKernel(const int n, const T* in, T* out) { int bid = threadIdx.x + blockIdx.x * blockDim.x; int tid = threadIdx.x; extern __shared__ T shared_max_data[]; if (gridDim.x > 1) { shared_max_data[tid] = T(0); for (int i = bid; i < n; i += blockDim.x * gridDim.x) { T tmp = fabs(in[i]); if (tmp > shared_max_data[tid]) { shared_max_data[tid] = tmp; } } } else { if (bid < n) { shared_max_data[tid] = fabs(in[bid]); } else { shared_max_data[tid] = T(0); } } __syncthreads(); for (int i = blockDim.x / 2; i > 0; i >>= 1) { if (tid < i && shared_max_data[tid] < shared_max_data[tid + i]) { shared_max_data[tid] = shared_max_data[tid + i]; } __syncthreads(); } if (tid == 0) { out[blockIdx.x] = shared_max_data[0]; } } float FindAbsMaxGpu(const platform::CUDADeviceContext& ctx, const float* array, int length) { float host_max; int kNumTheads = 1024; int gridDimx = (kNumTheads - 1 + length) / kNumTheads; gridDimx = (gridDimx > kNumTheads) ? kNumTheads : gridDimx; framework::Tensor t; float* device_max = t.mutable_data(framework::make_ddim({gridDimx}), platform::CUDAPlace()); FindAbsMaxKernel<<>>(length, array, device_max); FindAbsMaxKernel< float><<<1, kNumTheads, kNumTheads * sizeof(float), ctx.stream()>>>( gridDimx, device_max, device_max); PADDLE_ENFORCE_EQ( cudaMemcpy(&host_max, device_max, sizeof(float), cudaMemcpyDeviceToHost), cudaSuccess, "cudaMemcpy failed"); return host_max; } template __global__ void ApplySaturateKernel(const int n, const T* in, T* out, int* num_saturate, const T min, const T max) { int bid = threadIdx.x + blockIdx.x * blockDim.x; int tid = threadIdx.x; extern __shared__ int shared_count[]; shared_count[tid] = 0; for (int i = bid; i < n; i += blockDim.x * gridDim.x) { if (in[i] > max) { out[i] = max; shared_count[tid] += 1; } else if (in[i] < min) { out[i] = min; shared_count[tid] += 1; } else { out[i] = in[i]; } } __syncthreads(); for (int i = blockDim.x / 2; i > 0; i >>= 1) { if (tid < i) { shared_count[tid] += shared_count[tid + i]; } __syncthreads(); } if (tid == 0) { num_saturate[blockIdx.x] = shared_count[0]; } } template __global__ void ReduceKernel(const int n, const T* in, T* out) { int tid = threadIdx.x; extern __shared__ T shared_sum[]; if (tid < n) { shared_sum[tid] = in[tid]; } else { shared_sum[tid] = T(0); } __syncthreads(); // blockDim.x must >= n for (int i = (n + 1) / 2; i > 0; i >>= 1) { if (tid < i) { shared_sum[tid] += shared_sum[tid + i]; } __syncthreads(); } if (tid == 0) { out[0] = shared_sum[0]; } } template int ApplySaturateGpu(const platform::CUDADeviceContext& ctx, const int n, const T* in, T* out, const T min, const T max) { int host_num_saturate; int kNumTheads = 1024; int gridDimx = (n + kNumTheads - 1) / kNumTheads; gridDimx = (gridDimx > kNumTheads) ? kNumTheads : gridDimx; framework::Tensor t; int* device_num_saturate = t.mutable_data( framework::make_ddim({gridDimx}), platform::CUDAPlace()); ApplySaturateKernel< T><<>>( n, in, out, device_num_saturate, min, max); ReduceKernel<<<1, kNumTheads, kNumTheads * sizeof(T), ctx.stream()>>>( gridDimx, device_num_saturate, device_num_saturate); PADDLE_ENFORCE_EQ(cudaSuccess, cudaMemcpy(&host_num_saturate, device_num_saturate, sizeof(int), cudaMemcpyDeviceToHost), "cudaMemcpy failed"); return host_num_saturate; } template class FakeQuantizeCUDAKernel : public framework::OpKernel { public: T FindRangeAbsMax(const platform::CUDADeviceContext& ctx, framework::Tensor* scale_list, framework::Tensor* out_scale, const T& cur_scale, int window_size, int current_iter) const { T* sl = scale_list->mutable_data(platform::CPUPlace()); T remove_tmp = sl[current_iter]; sl[current_iter] = cur_scale; T& max_scale = out_scale->mutable_data(platform::CPUPlace())[0]; if (max_scale < cur_scale) { max_scale = cur_scale; } else if (fabs(remove_tmp - max_scale) < 1e-6) { int size = (current_iter > window_size) ? window_size : current_iter; max_scale = T(FindAbsMaxGpu(ctx, scale_list->data(), size)); } return max_scale; } T FindMovingAverageAbsMmax(framework::Tensor* in_scale, framework::Tensor* out_scale, const T& cur_scale) const { T* ins = in_scale->mutable_data(platform::CPUPlace()); T* outs = out_scale->mutable_data(platform::CPUPlace()); outs[0] = 0.9 * cur_scale + 0.1 * ins[0]; return T(outs[0]); } virtual void Compute(const framework::ExecutionContext& context) const { PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()), "This kernel only runs on GPU device."); auto& device_ctx = context.cuda_device_context(); auto* tensor = context.Output("Out"); auto* in = context.Input("X"); const bool is_test = context.Attr("is_test"); tensor->mutable_data(in->place()); context.Output("OutMovingScale") ->mutable_data( context.Input("InMovingScale")->place()); auto quantize_type = static_cast(context.Attr("quantize_type")); if (quantize_type == std::string("range_abs_max")) { context.Output("OutScales") ->mutable_data( context.Input("InScales")->place()); context.Output("OutCurrentIter") ->mutable_data( context.Input("InCurrentIter")->place()); } T scale = T(1); int window_size = context.Attr("window_size"); T bin_cnt = (T)((1 << (context.Attr("bit_length") - 1)) - 1); if (quantize_type == std::string("abs_max")) { auto* saving_scale = context.Output("OutMovingScale"); scale = (T)FindAbsMaxGpu(device_ctx, in->data(), in->numel()); saving_scale->mutable_data(platform::CPUPlace())[0] = scale; auto& device_ctx = context.template device_context(); auto* scale_list = context.Output("OutScales"); math::SetConstant scalar; scale_list->mutable_data(context.GetPlace()); scalar(device_ctx, scale_list, static_cast(0)); auto* iter = context.Output("OutCurrentIter"); iter->mutable_data(context.GetPlace()); scalar(device_ctx, iter, static_cast(0)); } else if (quantize_type == std::string("range_abs_max")) { auto* moving_scale = const_cast( context.Input("InMovingScale")); if (is_test) { scale = moving_scale->mutable_data(platform::CPUPlace())[0]; } else { auto* it = const_cast( context.Input("InCurrentIter")); auto* iter = context.Output("OutCurrentIter"); int* last_iter = it->mutable_data(platform::CPUPlace()); int* current_iter = iter->mutable_data(platform::CPUPlace()); auto* scale_list = context.Output("OutScales"); auto* saving_scale = context.Output("OutMovingScale"); scale = (T)FindAbsMaxGpu(device_ctx, in->data(), in->numel()); scale = FindRangeAbsMax(device_ctx, scale_list, saving_scale, scale, window_size, current_iter[0]); (*current_iter) = (*last_iter) + 1; } } else if (quantize_type == std::string("moving_average_abs_max")) { auto* moving_scale = const_cast( context.Input("InMovingScale")); if (is_test) { scale = moving_scale->mutable_data(platform::CPUPlace())[0]; } else { scale = (T)FindAbsMaxGpu(device_ctx, in->data(), in->numel()); auto* saving_scale = context.Output("OutMovingScale"); scale = FindMovingAverageAbsMmax( const_cast(moving_scale), saving_scale, scale); } } ApplySaturateGpu(device_ctx, in->numel(), in->data(), tensor->mutable_data(in->place()), -scale, scale); scale = bin_cnt / scale; auto& dev = *context.template device_context().eigen_device(); auto eigen_out = framework::EigenVector::Flatten(*tensor); auto eigen_in = framework::EigenVector::Flatten(*tensor); eigen_out.device(dev) = (scale * eigen_in).round(); } }; } // namespace operators } // namespace paddle REGISTER_OP_CUDA_KERNEL(fake_quantize, paddle::operators::FakeQuantizeCUDAKernel< paddle::platform::CUDADeviceContext, float>, paddle::operators::FakeQuantizeCUDAKernel< paddle::platform::CUDADeviceContext, double>);