/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { template struct SparseAdagradFunctor { void operator()(const DeviceContext &context, const framework::SelectedRows &grad, const framework::Tensor &learning_rate, T epsilon, framework::Tensor *moment, framework::Tensor *param); }; template class AdagradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *param_var = ctx.InputVar("Param"); PADDLE_ENFORCE(param_var->IsType(), "The Var(%s)'s type should be LoDTensor, " "but the received is %s", ctx.Inputs("Param").front(), param_var->Type().name()); auto *param_out_tensor = ctx.Output("ParamOut"); auto *moment_out_tensor = ctx.Output("MomentOut"); param_out_tensor->mutable_data(ctx.GetPlace()); moment_out_tensor->mutable_data(ctx.GetPlace()); T epsilon = static_cast(ctx.Attr("epsilon")); auto *grad_var = ctx.InputVar("Grad"); if (grad_var->IsType()) { auto param = framework::EigenVector::Flatten( *ctx.Input("Param")); auto grad = framework::EigenVector::Flatten( *ctx.Input("Grad")); auto moment = framework::EigenVector::Flatten( *ctx.Input("Moment")); auto *learning_rate = ctx.Input("LearningRate"); auto param_out = framework::EigenVector::Flatten(*param_out_tensor); auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); auto *place = ctx.template device_context().eigen_device(); moment_out.device(*place) = moment + grad * grad; Eigen::DSizes m_dsize(moment_out_tensor->numel()); if (platform::is_cpu_place(ctx.GetPlace())) { auto *lr = learning_rate->data(); param_out.device(*place) = param - lr[0] * grad / (moment_out.sqrt() + epsilon); } else { auto lr = framework::EigenVector::Flatten(*learning_rate); param_out.device(*place) = param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon); } } else if (grad_var->IsType()) { auto *param_tensor = ctx.Input("Param"); PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor); auto *moment_tensor = ctx.Input("Moment"); PADDLE_ENFORCE_EQ(moment_tensor, moment_out_tensor); SparseAdagradFunctor functor; functor(ctx.template device_context(), *ctx.Input("Grad"), *ctx.Input("LearningRate"), epsilon, moment_out_tensor, param_out_tensor); } else { PADDLE_THROW("Unsupported Variable Type of Grad"); } } }; } // namespace operators } // namespace paddle