// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/assign_value_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op_function.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; inline std::string GetValueName(framework::proto::VarType::Type data_type) { std::string value_name; switch (data_type) { case framework::proto::VarType::INT32: value_name = "int32_values"; break; case framework::proto::VarType::INT64: value_name = "int64_values"; break; case framework::proto::VarType::FP32: value_name = "fp32_values"; break; case framework::proto::VarType::FP64: value_name = "fp64_values"; break; case framework::proto::VarType::BOOL: value_name = "bool_values"; break; default: PADDLE_THROW(platform::errors::Unimplemented( "Unsupported data type(code %d) for SetValue operator, only " "supports bool, int32, float32 and int64.", data_type)); } return value_name; } inline framework::DDim GetSliceDims(const framework::DDim in_dims, const std::vector axes, const std::vector starts, const std::vector ends) { framework::DDim slice_dims(in_dims); for (size_t i = 0; i < axes.size(); ++i) { int64_t axis = axes[i]; int64_t dim_value = in_dims[axis]; int64_t start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i]; int64_t end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i]; start = std::max(start, static_cast(0)); end = std::min(end, dim_value); PADDLE_ENFORCE_GT(end, start, platform::errors::InvalidArgument( "end should greater than start, but " "received end = %d, start = %d", end, start)); slice_dims[axis] = end - start; } return slice_dims; } template class SetValueKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { const int rank = ctx.Input("Input")->dims().size(); // TODO(liym27): A more elegent code to do this. C++ has to make template // integer as constant, but we had better have alternative writing in the // future. switch (rank) { case 1: SetValueCompute<1>(ctx); break; case 2: SetValueCompute<2>(ctx); break; case 3: SetValueCompute<3>(ctx); break; case 4: SetValueCompute<4>(ctx); break; case 5: SetValueCompute<5>(ctx); break; case 6: SetValueCompute<6>(ctx); break; default: PADDLE_THROW(platform::errors::InvalidArgument( "The rank of input should be less than 7, but received %d.", rank)); } } private: template void SetValueCompute(const framework::ExecutionContext& ctx) const { auto* in = ctx.Input("Input"); auto* out = ctx.Output("Out"); auto dtype = static_cast(ctx.Attr("dtype")); auto axes = ctx.Attr>("axes"); auto starts = ctx.Attr>("starts"); auto ends = ctx.Attr>("ends"); auto shape = ctx.Attr>("shape"); auto* value_tensor = ctx.Input("ValueTensor"); auto in_dims = in->dims(); auto value_dims = framework::make_ddim(shape); auto slice_dims = GetSliceDims(in_dims, axes, starts, ends); auto place = ctx.GetPlace(); auto& eigen_place = *ctx.template device_context().eigen_device(); // Here copy data from input to avoid data loss at PE and Graph level. // TODO(liym27): Speed up in the future version. // - Q: Why don't call ShareDataWith to speed up? // - A: Because it's not supported to ShareDataWith on OP's input and output // https://github.com/PaddlePaddle/Paddle/wiki/ShareDataWith-and-ShareBufferWith-are-prohibited-in-OP // - Q: Why don't delete Input, after all, the input and output are the same // Tensor at program level? // - A: If deleting Input, the graph will be complex, such as there will // be two ops points to the output in graph: op1 -> output <- set_value. // In this case, we have to find a way to handle the running order of // set_value is what we want. TensorCopy(*in, place, out); Tensor slice_t(dtype), pad_t(dtype); slice_t.mutable_data(slice_dims, place); pad_t.mutable_data(in_dims, place); auto pad_e = framework::EigenTensor::From(pad_t, in_dims); auto out_e = framework::EigenTensor::From(*out); auto slice_e = framework::EigenTensor::From(slice_t, slice_dims); // Step 1: Set the value of out at `_index` to zero // - Step 1.1 Get a slice tensor from out Eigen::array offsets, extents; Eigen::array, D> paddings; for (size_t i = 0; i < D; ++i) { offsets[i] = 0; extents[i] = slice_dims[i]; } int64_t start; for (size_t i = 0; i < axes.size(); ++i) { start = starts[i] < 0 ? (starts[i] + in_dims[axes[i]]) : starts[i]; start = std::max(start, static_cast(0)); offsets[axes[i]] = start; } for (size_t i = 0; i < paddings.size(); ++i) { paddings[i].first = offsets[i]; paddings[i].second = (in_dims[i] - slice_dims[i]) - offsets[i]; } slice_e.device(eigen_place) = out_e.slice(offsets, extents); // - Step 1.2 Get paded tensor by padding 0 to slice tensor pad_e.device(eigen_place) = slice_e.pad(paddings, T(0)); // - Step 1.3 Set 0 at `_index` of out tensor out_e.device(eigen_place) = out_e - pad_e; // Step 2: Set a tensor with the same shape as out tensor. And its data at // '_index' is the same as value_tensor, and data out of '_index' to zero // - Step 2.1 Set the data of slice tensor to 0 slice_e.device(eigen_place) = slice_e.constant(T(0)); // - Step 2.2 Set slice tensor with value if (value_tensor != nullptr) { // ElementwiseComputeEx can do broadcasting ElementwiseComputeEx, DeviceContext, T>( ctx, &slice_t, value_tensor, -1, SubFunctor(), &slice_t); } else { Tensor value_t(dtype); value_t.mutable_data(value_dims, place); auto value_name = GetValueName(dtype); CopyVecotorToTensor(value_name.c_str(), &value_t, ctx); value_t.Resize(value_dims); ElementwiseComputeEx, DeviceContext, T>( ctx, &slice_t, &value_t, -1, SubFunctor(), &slice_t); } // - Step 2.3 Pad slice tensor with 0 pad_e.device(eigen_place) = slice_e.pad(paddings, T(0)); // Step 3: Set out tensor with value_tensor out_e.device(eigen_place) = out_e - pad_e; } }; } // namespace operators } // namespace paddle