// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "glog/logging.h" #include "paddle/phi/api/include/tensor.h" #include "paddle/phi/api/lib/api_registry.h" #include "paddle/phi/api/lib/kernel_dispatch.h" #include "paddle/phi/api/lib/utils/allocator.h" #include "paddle/phi/api/lib/utils/storage.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/common/scalar_array.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/meta_tensor.h" #include "paddle/phi/infermeta/unary.h" #include "paddle/phi/kernels/scale_kernel.h" namespace paddle { namespace experimental { PADDLE_API Tensor scale_kernel_context(const Tensor& x, const Scalar& scale, float bias, bool bias_after_scale) { Backend kernel_backend = Backend::UNDEFINED; DataLayout kernel_layout = DataLayout::UNDEFINED; DataType kernel_data_type = DataType::UNDEFINED; if (kernel_backend == Backend::UNDEFINED || kernel_layout == DataLayout::UNDEFINED || kernel_data_type == DataType::UNDEFINED) { auto kernel_key_set = ParseKernelKeyByInputArgs(x); auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey(); if (kernel_backend == Backend::UNDEFINED) { kernel_backend = kernel_key.backend(); } if (kernel_layout == DataLayout::UNDEFINED) { kernel_layout = kernel_key.layout(); } if (kernel_data_type == DataType::UNDEFINED) { kernel_data_type = kernel_key.dtype(); } } auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError( "scale", {kernel_backend, kernel_layout, kernel_data_type}); VLOG(6) << "scale API kernel key: [" << kernel_backend << ", " << kernel_layout << ", " << kernel_data_type << "]"; VLOG(6) << "scale API kernel: " << kernel; auto* dev_ctx = GetDeviceContextByBackend(kernel_backend); auto kernel_context = phi::KernelContext(dev_ctx); auto dense_x = std::dynamic_pointer_cast(x.impl()); kernel_context.EmplaceBackInput(dense_x.get()); kernel_context.EmplaceBackAttr(phi::Scalar(scale)); kernel_context.EmplaceBackAttr(bias); kernel_context.EmplaceBackAttr(bias_after_scale); auto dense_out = std::make_shared( phi::make_intrusive( phi::TransToPhiPlace(kernel_backend)), phi::DenseTensorMeta()); phi::MetaTensor meta_out(dense_out.get()); phi::UnchangedInferMeta(*dense_x, &meta_out); kernel_context.EmplaceBackOutput(dense_out.get()); Tensor out; out.set_impl(dense_out); kernel(&kernel_context); return out; } static void ScaleCPU(DataType kernel_dtype, const phi::CPUContext& dev_ctx, const phi::DenseTensor& x, const Scalar& scale, float bias, bool bias_after_scale, phi::DenseTensor* dense_out) { switch (kernel_dtype) { case phi::DataType::FLOAT64: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::FLOAT32: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::BFLOAT16: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::INT64: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::INT32: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::INT16: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::INT8: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::UINT8: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } default: { PADDLE_THROW(paddle::platform::errors::Fatal( "Detected unsupported data type." "Only Float64, Float32, BFloat16, Int64, Int32, Int16, Int8, UInt8 " "are supported for now.")); break; } } } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) static void ScaleGPU(DataType kernel_dtype, const phi::GPUContext& dev_ctx, const phi::DenseTensor& x, const Scalar& scale, float bias, bool bias_after_scale, phi::DenseTensor* dense_out) { switch (kernel_dtype) { case phi::DataType::FLOAT64: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::FLOAT32: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::FLOAT16: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::INT64: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::INT32: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::INT16: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::INT8: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } case phi::DataType::UINT8: { phi::ScaleKernel( dev_ctx, x, phi::Scalar(scale), bias, bias_after_scale, dense_out); break; } default: { PADDLE_THROW(paddle::platform::errors::Fatal( "Detected unsupported data type." "Only Float64, Float32, Float16, Int64, Int32, Int16, Int8, UInt8 " "are " "supported for now.")); break; } } } #endif Tensor scale_switch_case(const Tensor& x, const Scalar& scale, float bias, bool bias_after_scale) { Backend kernel_backend = Backend::UNDEFINED; DataLayout kernel_layout = DataLayout::UNDEFINED; DataType kernel_data_type = DataType::UNDEFINED; if (kernel_backend == Backend::UNDEFINED || kernel_layout == DataLayout::UNDEFINED || kernel_data_type == DataType::UNDEFINED) { auto kernel_key_set = ParseKernelKeyByInputArgs(x); auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey(); if (kernel_backend == Backend::UNDEFINED) { kernel_backend = kernel_key.backend(); } if (kernel_layout == DataLayout::UNDEFINED) { kernel_layout = kernel_key.layout(); } if (kernel_data_type == DataType::UNDEFINED) { kernel_data_type = kernel_key.dtype(); } } auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError( "scale", {kernel_backend, kernel_layout, kernel_data_type}); VLOG(6) << "scale API kernel key: [" << kernel_backend << ", " << kernel_layout << ", " << kernel_data_type << "]"; VLOG(6) << "scale API kernel: " << kernel; auto* dev_ctx = GetDeviceContextByBackend(kernel_backend); auto dense_x = std::dynamic_pointer_cast(x.impl()); auto dense_out = std::make_shared( phi::make_intrusive( phi::TransToPhiPlace(kernel_backend)), phi::DenseTensorMeta()); phi::MetaTensor meta_out(dense_out.get()); phi::UnchangedInferMeta(*dense_x, &meta_out); Tensor out; out.set_impl(dense_out); switch (kernel_backend) { case Backend::CPU: ScaleCPU(kernel_data_type, static_cast(*dev_ctx), *dense_x, scale, bias, bias_after_scale, dense_out.get()); break; #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) case Backend::GPU: ScaleGPU(kernel_data_type, static_cast(*dev_ctx), *dense_x, scale, bias, bias_after_scale, dense_out.get()); break; #endif default: PADDLE_THROW(paddle::platform::errors::Fatal( "Detected unsupported backend." "Only CPU and CUDA Backend are supported for now." "Please double check if your backend falls into the above two " "categories.")); } return out; } } // namespace experimental } // namespace paddle