/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "MulOp.h" /// todo(tianbing), delete it #include #include "paddle/math/MathFunctions.h" #include "paddle/math/SIMDFunctions.h" #include "paddle/utils/ThreadLocal.h" #ifndef PADDLE_TYPE_DOUBLE #define GEMM paddle::gemm #else #define GEMM paddle::gemm #endif namespace { inline void vecAddTo(real* a, const real* b, real scaleB, size_t len) { for (unsigned int i = 0; i < len; ++i) { a[i] += (1.0 == scaleB) ? b[i] : scaleB * b[i]; } } inline void colVecAddTo( real* a, real* b, real c, size_t len, size_t aWidth, size_t bWidth) { for (unsigned int i = 0; i < len; ++i) { a[i * aWidth] += (1.0 == c) ? b[i * bWidth] : b[i * bWidth] * c; } } } // namespace namespace paddle { template <> void MulOp(CpuSparseMatrix& out, const CpuMatrix& a, const CpuMatrix& b, real scaleAB, real scaleT, bool aTrans, bool bTrans, bool cTrans) { CHECK_EQ(out.getValueType(), FLOAT_VALUE); if (scaleT == 0) { out.zeroMem(); } const real* A = a.getData(); const real* B = b.getData(); real* C = out.getValue(); int* rows = out.getRows(); int* cols = out.getCols(); size_t width = out.getWidth(); size_t height = out.getHeight(); /// SPARSE_CSC, {a any, b not trans} if (out.getFormat() == SPARSE_CSC) { /// b not trans and a any CHECK(!bTrans); size_t m = !aTrans ? a.getWidth() : a.getHeight(); for (size_t i = 0; i < width; i++) { size_t start = out.getColStartIdx(i); size_t end = out.getColStartIdx(i + 1); for (size_t j = start; j < end; j++) { real sum = 0; size_t rowIdx = rows[j]; for (size_t k = 0; k < m; k++) { sum += (!aTrans ? A[rowIdx * m + k] : A[k * height + rowIdx]) * B[k * width + i]; } C[j] = scaleAB * sum + scaleT * C[j]; } } return; } /// SPARSE_CSR, {a any, b not trans} or {a not trans, b trans} if (out.getFormat() == SPARSE_CSR) { /// a and b can not both transpose CHECK(!(aTrans && bTrans)); size_t m = a.getWidth(); for (size_t i = 0; i < height; i++) { size_t start = out.getRowStartIdx(i); size_t end = out.getRowStartIdx(i + 1); for (size_t j = start; j < end; j++) { real sum = 0; size_t colIdx = cols[j]; for (size_t k = 0; k < m; k++) { sum += (!aTrans ? A[i * m + k] : A[k * height + i]) * (!bTrans ? B[k * width + colIdx] : B[colIdx * m + k]); } C[j] = scaleAB * sum + scaleT * C[j]; } } return; } } template <> void MulOp(CpuMatrix& out, const CpuMatrix& a, const CpuMatrix& b, real scaleAB, real scaleT, bool aTrans, bool bTrans, bool cTrans) { GEMM(aTrans ? CblasTrans : CblasNoTrans, bTrans ? CblasTrans : CblasNoTrans, out.getHeight(), out.getWidth(), !aTrans ? a.getWidth() : a.getHeight(), scaleAB, a.getData(), a.getStride(), b.getData(), b.getStride(), scaleT, out.getData(), out.getStride()); } template <> void MulOp(CpuMatrix& out, const CpuSparseMatrix& a, const CpuMatrix& b, real scaleAB, real scaleT, bool aTrans, bool bTrans, bool cTrans) { CHECK_EQ(a.getFormat(), SPARSE_CSR) << "Not supported SPARSE_CSR format for a"; if (scaleT == 0) { out.zeroMem(); } const real* B = b.getData(); real* C = out.getData(); if (out.getWidth() % 32 == 0) { CHECK_EQ((size_t)B % 32, 0UL); CHECK_EQ((size_t)C % 32, 0UL); } int* cols = a.getCols(); real* values = a.getValue(); for (size_t i = 0; i < a.getHeight(); ++i) { const int start = a.getRowStartIdx(i); const int end = a.getRowStartIdx(i + 1); for (int j = start; j < end; ++j) { vecAddTo(!aTrans ? out.getRow(i) : out.getRow(cols[j]), !aTrans ? const_cast(b).getRow(cols[j]) : const_cast(b).getRow(i), (a.getValueType() == FLOAT_VALUE) ? values[j] : (real)1.0, out.getWidth()); } } } template <> void MulOp(CpuMatrix& out, const CpuMatrix& a, const CpuSparseMatrix& b, real scaleAB, real scaleT, bool aTrans, bool bTrans, bool cTrans) { if (scaleT == 0) { out.zeroMem(); } real* A = const_cast(a.getData()); real* B = const_cast(b.getValue()); real* C = out.getData(); int* rows = b.getRows(); int* cols = b.getCols(); /// b.getFormat() == SPARSE_CSC if (b.getFormat() == SPARSE_CSC) { for (size_t j = 0; j < b.getWidth(); ++j) { int start = b.getColStartIdx(j); int end = b.getColStartIdx(j + 1); for (int i = start; i < end; ++i) { colVecAddTo(!bTrans ? C + j : C + rows[i], !bTrans ? A + rows[i] : A + j, (b.getValueType() == NO_VALUE) ? (real)1.0 : B[i], out.getHeight(), out.getWidth(), a.getWidth()); } } return; } /// b.getFormat() == SPARSE_CSR if (b.getFormat() == SPARSE_CSR) { for (size_t j = 0; j < b.getHeight(); ++j) { int start = b.getRowStartIdx(j); int end = b.getRowStartIdx(j + 1); for (int i = start; i < end; ++i) { colVecAddTo(!bTrans ? C + cols[i] : C + j, !bTrans ? A + j : A + cols[i], (b.getValueType() == NO_VALUE) ? (real)1.0 : B[i], out.getHeight(), out.getWidth(), a.getWidth()); } } return; } } /** * mul operator * out = scaleT * out + scaleAB*(in1 * in2) * * \param outputs[0] output matrix, M * N * \param inputs[0] first input (sparse) matrix, M * K (if non-trans) * \param inputs[1] second input matrix, K * N (if non-trans) */ template class MulFunc : public FunctionBase { public: void init(const FuncConfig& config) override { alpha_ = config.get("scaleAB"); beta_ = config.get("scaleT"); aTrans_ = config.get("aTrans"); bTrans_ = config.get("bTrans"); cTrans_ = config.get("cTrans"); } void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { CHECK(!cTrans_) << "output matrix should not be transposed"; CHECK(!aTrans_ || !bTrans_) << "Not support both a and b are transpose matrices"; CHECK_EQ((size_t)2, inputs.size()); CHECK_EQ((size_t)1, outputs.size()); CHECK(inputs[0].data() && inputs[1].data() && outputs[0].data()); CHECK_EQ(inputs[0].shape().ndims(), (size_t)2); CHECK_EQ(inputs[1].shape().ndims(), (size_t)2); CHECK_EQ(outputs[0].shape().ndims(), (size_t)2); size_t aRow = !aTrans_ ? inputs[0].shape()[0] : inputs[0].shape()[1]; size_t aCol = !aTrans_ ? inputs[0].shape()[1] : inputs[0].shape()[0]; size_t bRow = !bTrans_ ? inputs[1].shape()[0] : inputs[1].shape()[1]; size_t bCol = !bTrans_ ? inputs[1].shape()[1] : inputs[1].shape()[0]; /// C = A * B, or C += A * B, for matrix format CHECK_EQ(aCol, bRow); CHECK_EQ(aRow, outputs[0].shape()[0]); CHECK_EQ(bCol, outputs[0].shape()[1]); /// only support C = A * B or C += A * B CHECK_EQ(alpha_, static_cast(1.0)); CHECK((beta_ == 0 && outputs[0].getArgType() == ASSIGN_TO) || (beta_ == 1 && outputs[0].getArgType() == ADD_TO)); /// support dense = not both sparse * sparse /// or sparse = dense * dense CHECK((!outputs[0].isSparseArg() && !(inputs[0].isSparseArg() && inputs[1].isSparseArg())) || (outputs[0].isSparseArg() && !inputs[0].isSparseArg() && !inputs[1].isSparseArg())); auto outMat = outputs[0].matrix(); /// matrix = matrix * matrix if (!inputs[0].isSparseArg() && !inputs[1].isSparseArg() && !outputs[0].isSparseArg()) { MulOp(outMat, inputs[0].matrix(), inputs[1].matrix(), alpha_, beta_, aTrans_, bTrans_, cTrans_); return; } /// matrix = matrix * sparse matrix if (!inputs[0].isSparseArg() && inputs[1].isSparseArg() && !outputs[0].isSparseArg()) { CHECK(!aTrans_) << "Not supported a transpose"; MulOp(outMat, inputs[0].matrix(), inputs[1].sparse().SparseMatrix(), alpha_, beta_, aTrans_, bTrans_, cTrans_); return; } /// matrix = sparse matrix * matrix if (inputs[0].isSparseArg() && !inputs[1].isSparseArg() && !outputs[0].isSparseArg()) { CHECK(!bTrans_) << "Not supported b transpose"; MulOp(outMat, inputs[0].sparse().SparseMatrix(), inputs[1].matrix(), alpha_, beta_, aTrans_, bTrans_, cTrans_); return; } /// sparse matrix = matrix * matrix auto outSparseMat = outputs[0].sparse().SparseMatrix(); if (!inputs[0].isSparseArg() && !inputs[1].isSparseArg() && outputs[0].isSparseArg()) { MulOp(outSparseMat, inputs[0].matrix(), inputs[1].matrix(), alpha_, beta_, aTrans_, bTrans_, cTrans_); return; } } private: real alpha_; real beta_; bool aTrans_; bool bTrans_; bool cTrans_; }; REGISTER_TYPED_FUNC(MulOp, CPU, MulFunc); #ifndef PADDLE_ONLY_CPU REGISTER_TYPED_FUNC(MulOp, GPU, MulFunc); #endif } // namespace paddle