# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle paddle.enable_static() import unittest import paddle.fluid as fluid from paddle.distributed import ( CountFilterEntry, ProbabilityEntry, ShowClickEntry, ) class EntryAttrChecks(unittest.TestCase): def base(self): with self.assertRaises(NotImplementedError): from paddle.distributed.entry_attr import EntryAttr base = EntryAttr() base._to_attr() def probability_entry(self): prob = ProbabilityEntry(0.5) ss = prob._to_attr() self.assertEqual("probability_entry:0.5", ss) with self.assertRaises(ValueError): prob1 = ProbabilityEntry("none") with self.assertRaises(ValueError): prob2 = ProbabilityEntry(-1) def countfilter_entry(self): counter = CountFilterEntry(20) ss = counter._to_attr() self.assertEqual("count_filter_entry:20", ss) with self.assertRaises(ValueError): counter1 = CountFilterEntry("none") with self.assertRaises(ValueError): counter2 = CountFilterEntry(-1) def showclick_entry(self): showclick = ShowClickEntry("show", "click") ss = showclick._to_attr() self.assertEqual("show_click_entry:show:click", ss) def spaese_layer(self): prog = fluid.Program() scope = fluid.core.Scope() with fluid.scope_guard(scope): with fluid.program_guard(prog): input = paddle.static.data( name="dnn_data", shape=[-1, 1], dtype="int64", lod_level=1 ) prob = ProbabilityEntry(0.5) emb = paddle.static.nn.sparse_embedding( input=input, size=[100, 10], is_test=False, entry=prob, param_attr=fluid.ParamAttr(name="deep_embedding"), ) pool = paddle.static.nn.sequence_lod.sequence_pool( input=emb, pool_type="sum" ) predict = paddle.static.nn.fc( x=pool, size=2, activation='softmax' ) block = prog.global_block() for op in block.ops: if op.type == "lookup_table": entry = op.attr("entry") is_test = op.attr("is_test") is_sparse = op.attr("is_sparse") is_distributed = op.attr("is_distributed") self.assertEqual(entry, "probability_entry:0.5") self.assertTrue(is_distributed) self.assertTrue(is_sparse) self.assertFalse(is_test) class TestEntryAttrs(EntryAttrChecks): def test_base(self): self.base() def test_prob(self): self.probability_entry() def test_counter(self): self.countfilter_entry() def test_showclick(self): self.showclick_entry() def test_spaese_embedding_layer(self): self.spaese_layer() if __name__ == '__main__': unittest.main()