# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import tempfile import warnings import json import paddle import paddle.nn as nn from paddle.io import Dataset, DataLoader, BatchSampler, SequenceSampler import sys import os class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([10]).astype('float32') label = np.random.randint(0, 10 - 1, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples class SimpleNet(nn.Layer): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(10, 10) def forward(self, image): return self.fc(image) class TestAutoTune(unittest.TestCase): def setUp(self): self.batch_size = 1 self.dataset = RandomDataset(10) def test_dataloader_use_autotune(self): paddle.incubate.autotune.set_config( config={"dataloader": { "enable": True, "tuning_steps": 1, }}) loader = DataLoader( self.dataset, batch_size=self.batch_size, num_workers=0) def test_dataloader_disable_autotune(self): config = {"dataloader": {"enable": False, "tuning_steps": 1}} tfile = tempfile.NamedTemporaryFile(mode="w+", delete=False) json.dump(config, tfile) tfile.close() paddle.incubate.autotune.set_config(tfile.name) os.remove(tfile.name) loader = DataLoader( self.dataset, batch_size=self.batch_size, num_workers=2) if (sys.platform == 'darwin' or sys.platform == 'win32'): self.assertEqual(loader.num_workers, 0) else: self.assertEqual(loader.num_workers, 2) def test_distributer_batch_sampler_autotune(self): paddle.incubate.autotune.set_config( config={"dataloader": { "enable": True, "tuning_steps": 1, }}) batch_sampler = paddle.io.DistributedBatchSampler( self.dataset, batch_size=self.batch_size) loader = DataLoader( self.dataset, batch_sampler=batch_sampler, num_workers=2) class TestAutoTuneAPI(unittest.TestCase): def test_set_config_warnings(self): with warnings.catch_warnings(record=True) as w: config = {"kernel": {"enable": 1, "tuning_range": True}} tfile = tempfile.NamedTemporaryFile(mode="w+", delete=False) json.dump(config, tfile) tfile.close() paddle.incubate.autotune.set_config(tfile.name) os.remove(tfile.name) self.assertTrue(len(w) == 2) if __name__ == '__main__': unittest.main()