/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/hostdevice.h" #include "paddle/phi/kernels/funcs/aligned_vector.h" #include "paddle/phi/kernels/primitive/kernel_primitives.h" namespace phi { template __global__ void VectorizedIndexKernel(T *out, size_t numel, size_t main_offset, Functor func) { size_t data_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize; size_t stride = BLOCK_NUM_X * GRID_NUM_X * VecSize; size_t args[VecSize]; T result[VecSize]; for (; data_offset < main_offset; data_offset += stride) { kps::InitWithDataIndex(&args[0], data_offset); kps::ElementwiseUnary( &result[0], &args[0], func); kps::WriteData( out + data_offset, &result[0], BLOCK_NUM_X * VecSize); } size_t num = numel - data_offset; if (num > 0) { kps::InitWithDataIndex(&args[0], data_offset); kps::ElementwiseUnary( &result[0], &args[0], func); kps::WriteData(out + data_offset, &result[0], num); } } template void IndexKernel(const KPDevice &dev_ctx, DenseTensor *out, Functor func) { int numel = out->numel(); T *out_data = dev_ctx.template Alloc(out); if (numel <= 0) return; int vec_size = phi::GetVectorizedSize(out_data); #ifdef PADDLE_WITH_XPU_KP int block = 64; int grid = 8; auto stream = dev_ctx.x_context()->xpu_stream; #else auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, numel, vec_size); int grid = config.block_per_grid.x; int block = config.thread_per_block.x; auto stream = dev_ctx.stream(); #endif size_t main_offset = (numel / (vec_size * block)) * vec_size * block; switch (vec_size) { case 4: VectorizedIndexKernel<<>>( out_data, numel, main_offset, func); break; case 2: VectorizedIndexKernel<<>>( out_data, numel, main_offset, func); break; case 1: VectorizedIndexKernel<<>>( out_data, numel, main_offset, func); break; default: { PADDLE_THROW(phi::errors::Unimplemented( "Unsupported vectorized size: %d !", vec_size)); break; } } } } // namespace phi