// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/mkldnn/mkldnn_inplace_pass.h" #include #include #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/op_version_registry.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace framework { namespace ir { void MKLDNNInPlacePass::ApplyImpl(ir::Graph* graph) const { PADDLE_ENFORCE_NOT_NULL(graph, platform::errors::InvalidArgument( "Pointer to graph argument should not be NULL.")); std::unordered_map original_output_names; std::unordered_set inplaced_vars; GraphPatternDetector gpd; patterns::MKLDNNInPlace mkldnn_inplace{gpd.mutable_pattern(), "mkldnn_inplace"}; mkldnn_inplace(); int found_inplace_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(3) << "Start to handle MKL-DNN In-Place pass"; GET_IR_NODE_FROM_SUBGRAPH(current_op, inplace_to_be_op, mkldnn_inplace); GET_IR_NODE_FROM_SUBGRAPH(current_op_in, inplace_to_be_op_in, mkldnn_inplace); GET_IR_NODE_FROM_SUBGRAPH(current_op_out, inplace_to_be_op_out, mkldnn_inplace); GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, mkldnn_inplace); GET_IR_NODE_FROM_SUBGRAPH(next_op_out, next_op_out, mkldnn_inplace); if ((current_op->Op()->HasAttr("use_mkldnn") == false) || (BOOST_GET_CONST(bool, current_op->Op()->GetAttr("use_mkldnn")) == false)) { VLOG(3) << "do not perform mkl-dnn inplace: use_mkldnn missing or set to " "false"; return; } auto& infer_inplace = OpInfoMap::Instance().Get(current_op->Op()->Type()).infer_inplace_; if (!infer_inplace) { VLOG(3) << "do not perform mkl-dnn inplace: missing InplaceInferer"; return; } VLOG(3) << "oneDNN Inplace op(" << current_op->id() << ") " << "Curr Node In: " << current_op_in->Name() << " Curr Node out: " << current_op_out->Name(); VLOG(3) << "oneDNN Inplace next op(" << next_op->id() << ") " << " next Node out: " << next_op_out->Name(); auto inputs = current_op->Op()->Inputs(); auto outputs = current_op->Op()->Outputs(); auto in_to_outs = infer_inplace(false); // strictly no CUDA for MKL-DNN VLOG(3) << "oneDNN InplaceInferer op(" << current_op->id() << ") " << in_to_outs.begin()->first << ": " << inputs[in_to_outs.begin()->first][0] << " " << in_to_outs.begin()->second << ": " << outputs[in_to_outs.begin()->second][0]; // If InferInplace pattern does not contain input node then skip auto inplace_input_vec = inputs[in_to_outs.begin()->first]; if (std::find(inplace_input_vec.begin(), inplace_input_vec.end(), current_op_in->Name()) == inplace_input_vec.end()) { VLOG(3) << "oneDNN in-place pass SKIP pattern "; return; } // Checking if this particular node (to be inplaced, overwritten) // is used anywhere else apart from inplaced op auto input_consumers = current_op_in->outputs; if (input_consumers.size() > 1) { VLOG(3) << "oneDNN in-place pass FAIL: in-place var cannot " "be an input to multiple operators"; return; } else { // We will prevent in-place when // input is used in other part of graph, unless it was a result of // inplacing // Allow to next op out reuse inpuit var, as this is the same chaing if (inplaced_vars.find(current_op_in->Name()) == inplaced_vars.end()) { for (const Node* n : graph->Nodes()) { if ((n->id() != current_op_in->id()) && (n->id() != next_op_out->id()) && (n->Name() == current_op_in->Name())) { VLOG(3) << "oneDNN in-place pass FAIL var used in diffrent part of " "graph "; return; } } } } // If this op was alrady inplaced in previous pass placements // then we need to update input of next op // but original name to be changed is gone, so we need to remember it // on first time given op is to be inplaced if (current_op_in->Name() != current_op_out->Name()) { original_output_names[current_op->Name() + current_op_in->Name()] = current_op_out->Name(); } else { VLOG(3) << "oneDNN Inplace: Current op already inplaced! "; } // It may be that next op is reusing some of vars, we need to // make sure that unwanted inplace is not created for (auto& n : current_op_out->outputs) { auto& n_op_infer_inplace = OpInfoMap::Instance().Get(n->Op()->Type()).infer_inplace_; if ((n_op_infer_inplace == nullptr)) { for (auto& m : n->outputs) { if (m->Name() == current_op_in->Name()) { VLOG(3) << "oneDNN in-place pass FAIL: in-place var cannot " "be an output to non-inplaced next op"; return; } } } } auto original_name = original_output_names[current_op->Name() + current_op_in->Name()]; current_op_out->RenameVar(current_op_in->Name()); // Get mapping of input to output auto out_name = in_to_outs.begin()->second; current_op->Op()->SetOutput( out_name, std::vector({current_op_out->Name()})); // Record var name inplaced_vars.insert(current_op_out->Name()); // If next op in a line is doing inplace // then we need to update its output as well // Get inferer of next op // If no inferer then we are done auto& next_op_infer_inplace = OpInfoMap::Instance().Get(next_op->Op()->Type()).infer_inplace_; if (next_op_infer_inplace) { auto in_to_outs = next_op_infer_inplace(false); auto out_name = in_to_outs.begin()->second; auto* op = next_op->Op(); auto inputs = op->Inputs(); auto outputs = op->Outputs(); // Check if in-place happened // for variable we changed (original name) // TODO(jczaja): make recursive propagation of inplace auto next_op_inplace_inputs = inputs[in_to_outs.begin()->first]; if ((next_op_inplace_inputs == outputs[in_to_outs.begin()->second]) && (std::find(next_op_inplace_inputs.begin(), next_op_inplace_inputs.end(), original_name) != next_op_inplace_inputs.end())) { VLOG(3) << "oneDNN InPlace: Next Op is in-placed , updating its " "input " "and output var!"; next_op->Op()->SetOutput( out_name, std::vector({current_op_out->Name()})); next_op_out->RenameVar(current_op_in->Name()); // Get ops that next_op_out is linked to and update their input auto next_op_out_consumers = next_op_out->outputs; // Has to be ops for (auto& c : next_op_out_consumers) { c->Op()->RenameInput(original_name, current_op_out->Name()); } } } next_op->Op()->RenameInput(original_name, current_op_out->Name()); found_inplace_count++; VLOG(3) << "oneDNN InPlace applied!"; }; // TODO(jczaja): inplace pass does not influece ops inside block ops auto should_inplace = [&](Graph* g) { std::unordered_set unwanted_ops( {"conditional_block", "While", "while_loop"}); for (auto& node : g->Nodes()) { if (node->IsOp() && unwanted_ops.find(node->Name()) != unwanted_ops.end()) { VLOG(3) << "oneDNN InPlace FAILED: unsupported op: " << node->Name(); return false; } } return true; }; if (should_inplace(graph)) gpd(graph, handler); } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(mkldnn_inplace_pass, paddle::framework::ir::MKLDNNInPlacePass); REGISTER_PASS_CAPABILITY(mkldnn_inplace_pass) .AddCombination( paddle::framework::compatible::OpVersionComparatorCombination() .EQ("softmax", 0) .LE("elementwise_add", 1) .EQ("tanh", 0));