// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h" #include #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph_helper.h" #include "paddle/fluid/framework/ir/graph_pattern_detector.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/inference/io.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/common/layout.h" #include "paddle/phi/core/tensor_meta.h" using namespace paddle::framework; // NOLINT namespace paddle { namespace inference { namespace analysis { namespace { bool IsKernelSupportPrecision( const std::string& op_type, phi::Backend backend, phi::DataType data_type, phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) { auto kernels = phi::KernelFactory::Instance().kernels(); if (kernels.find(op_type) == kernels.end()) { return false; } phi::KernelKey kernel_key(backend, layout, data_type); return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key); } bool GpuKernelSupportPrecision( const std::string& op_type, phi::DataType data_type, phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) { bool res = IsKernelSupportPrecision(op_type, phi::Backend::GPU, data_type, layout); res |= IsKernelSupportPrecision( op_type, phi::Backend::GPUDNN, data_type, layout); return res; } // Just process special cases. bool OutShouldNotConvert(ir::Node* var_node) { auto op_node = var_node->inputs[0]; auto* op_desc = op_node->Op(); // batch_norm's input and output (variance and mean) are the same. if (op_desc->Type() == "batch_norm") { auto vecs = op_desc->Output("MeanOut"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Output("VarianceOut"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Output("SavedMean"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Output("SavedVariance"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } } return false; } // Just process special cases for weights conversion. bool WeightsShouldNotConvert(ir::Node* var_node) { auto op_nodes = var_node->outputs; for (auto* op_node : op_nodes) { auto* op_desc = op_node->Op(); // batch_norm op's bias, mean, scale and variance just be float32, so we can // not convert the dtype. if (op_desc->Type() == "batch_norm") { auto vecs = op_desc->Input("Bias"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Input("Mean"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Input("Scale"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Input("Variance"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } } } return false; } void ConvertTensorDtype(framework::ir::Graph* graph, const std::unordered_set& blacklist, bool keep_io_types, phi::Backend backend, phi::DataType tensor_dtype) { framework::proto::VarType::Type to_type; if (tensor_dtype == phi::DataType::FLOAT16) { to_type = framework::proto::VarType::FP16; } else if (tensor_dtype == phi::DataType::BFLOAT16) { to_type = framework::proto::VarType::BF16; } else { PADDLE_THROW(paddle::platform::errors::InvalidArgument( "mixed_precision currently not supported dtype %d, we now only support " "fp16 and bf16.", static_cast(tensor_dtype))); } int num_low_precision = 0; int suffix = 0; framework::BlockDesc* block_desc{nullptr}; std::vector output_nodes; std::unordered_map cast_map; for (auto* op_node : framework::ir::TopologySortOperations(*graph)) { if (!op_node->IsOp()) continue; auto op_type = op_node->Op()->Type(); auto phi_op_type = phi::TransToPhiKernelName(op_type); // LOG(INFO) << "process op " << op_type << ", corresponding phi type is " // << phi_op_type; // 1. set input dtype. if (op_type == "feed") { block_desc = op_node->Op()->Block(); auto feed_var = op_node->outputs[0]->Var(); if (!keep_io_types && feed_var->GetDataType() == framework::proto::VarType::FP32) { feed_var->SetDataType(to_type); } } else if (op_type == "fetch") { auto* fetch_var = op_node->inputs[0]; output_nodes.push_back(fetch_var); continue; } // 2. if op support fp16/bf16 and not in blacklist. // - cast weight to fp16/bf16. // - add cast op if the input dtype is not fp16/bf16. // - set output dtype. else if (blacklist.count(phi_op_type) == 0) { // NOLINT bool support_precision = OpSupportPrecision(phi_op_type, backend, tensor_dtype, blacklist); VLOG(2) << "phi_op_type " << phi_op_type << " support low precision " << support_precision; if (support_precision) { ++num_low_precision; auto inputs = op_node->inputs; for (auto* in_node : inputs) { auto* in_var = in_node->Var(); if (in_var->Persistable() && in_var->GetDataType() == framework::proto::VarType::FP32) { if (WeightsShouldNotConvert(in_node)) continue; in_var->SetDataType(to_type); } else if (!in_var->Persistable() && in_var->GetDataType() != to_type) { AddCastOp(graph, in_node, op_node, in_var->GetDataType(), to_type, &suffix, block_desc, &cast_map); } } for (auto* out_node : op_node->outputs) { auto* out_var = out_node->Var(); if (out_var->GetDataType() == framework::proto::VarType::FP32) { if (OutShouldNotConvert(out_node)) continue; out_var->SetDataType(to_type); } } } else { auto inputs = op_node->inputs; for (auto* in_node : inputs) { auto* in_var = in_node->Var(); if (!in_var->Persistable() && in_var->GetDataType() != framework::proto::VarType::FP32) { AddCastOp(graph, in_node, op_node, in_var->GetDataType(), framework::proto::VarType::FP32, &suffix, block_desc, &cast_map); } } } } // 3. check op not support fp16/bf16 or in blacklist. // - add cast op if the input dtype is not fp32. else { // NOLINT // trt pass should explicitle add cast op is input is bf16/tf32, etc. if (op_node->Name() == "tensorrt_engine") continue; for (auto* in_node : op_node->inputs) { auto* in_var = in_node->Var(); if (in_var->GetDataType() == to_type) { AddCastOp(graph, in_node, op_node, to_type, framework::proto::VarType::FP32, &suffix, block_desc, &cast_map); } } } } // 4. if output_op's dtype is not compatible to output dtype, then just insert // cast. for (auto* node : output_nodes) { auto var = node->Var(); if (keep_io_types && var->GetDataType() == to_type) { // fp16/bf16 -> fp32. AddCastOp(graph, node, node->outputs[0], to_type, framework::proto::VarType::FP32, &suffix, block_desc, &cast_map); } else if (!keep_io_types && var->GetDataType() == framework::proto::VarType::FP32) { // fp32 -> fp16/bf16 AddCastOp(graph, node, node->outputs[0], framework::proto::VarType::FP32, to_type, &suffix, block_desc, &cast_map); } } if (num_low_precision) LOG(INFO) << "--- detected " << num_low_precision << " low precision ops"; } } // namespace bool OpSupportPrecision(const std::string& phi_op_type, phi::Backend backend, phi::DataType precision, const std::unordered_set& blacklist) { bool support_precision = false; if (blacklist.count(phi_op_type) == 0) { if (backend == phi::Backend::GPU) support_precision = GpuKernelSupportPrecision(phi_op_type, precision); else support_precision = IsKernelSupportPrecision(phi_op_type, backend, precision); } return support_precision; } void AddCastOp( framework::ir::Graph* graph, framework::ir::Node* node, framework::ir::Node* next_op, framework::proto::VarType::Type from_type, framework::proto::VarType::Type to_type, int* suffix, framework::BlockDesc* block_desc, std::unordered_map* map) { auto update_cast_desc = [&](framework::OpDesc& desc, const std::string& x_name, const std::string& out_name, const int in_dtype, const int out_dtype) { desc.SetType("cast"); desc.SetInput("X", {x_name}); desc.SetOutput("Out", {out_name}); desc.SetAttr("in_dtype", in_dtype); desc.SetAttr("out_dtype", out_dtype); desc.SetAttr("use_mkldnn", false); desc.SetAttr("with_quant_attr", false); desc.Flush(); }; if (map->count(node) == 0) { // insert cast op before node. std::string cast_input_name = node->Var()->Name(); std::string cast_output_name = node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++); CHECK_NOTNULL(block_desc); framework::OpDesc cast_op_desc(block_desc); update_cast_desc(cast_op_desc, cast_input_name, cast_output_name, static_cast(from_type), static_cast(to_type)); auto* cast_op_node = graph->CreateOpNode(&cast_op_desc); auto* cast_output_vardesc = block_desc->Var(cast_output_name); cast_output_vardesc->SetPersistable(false); cast_output_vardesc->SetDataType(to_type); cast_output_vardesc->SetShape(node->Var()->GetShape()); auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc); IR_NODE_LINK_TO(cast_op_node, cast_output_node); (*map)[node] = cast_output_node; } next_op->Op()->RenameInput(node->Name(), map->at(node)->Name()); IR_NODE_LINK_TO(node, map->at(node)->inputs[0]); IR_NODE_LINK_TO(map->at(node), next_op); } void ConvertToMixedPrecision(const std::string& model_file, const std::string& params_file, const std::string& mixed_model_file, const std::string& mixed_params_file, phi::DataType mixed_precision, phi::Backend backend, bool keep_io_types, std::unordered_set black_list) { paddle::CPUPlace place; framework::Executor executor(place); framework::Scope scope; auto program_desc = inference::Load(&executor, &scope, model_file, params_file); auto graph = std::unique_ptr( new framework::ir::Graph(*program_desc)); ConvertTensorDtype( graph.get(), black_list, keep_io_types, backend, mixed_precision); framework::ProgramDesc mixed_program_desc; framework::ir::GraphToProgram(*graph, &mixed_program_desc); auto parameters = scope.LocalVarNames(); std::sort(parameters.begin(), parameters.end()); auto serialize_params = [](framework::Scope* scope, const std::vector& params) -> std::string { std::ostringstream os; phi::CPUContext ctx; for (const auto& param : params) { VLOG(3) << "Serialize param: " << param; PADDLE_ENFORCE_NOT_NULL( scope->FindVar(param), platform::errors::NotFound( "Block should already have a '%s' variable", param)); auto* tensor = scope->FindVar(param)->GetMutable(); framework::SerializeToStream(os, *tensor, ctx); } return os.str(); }; std::unordered_set weights_should_be_fp32; for (auto* node : paddle::framework::ir::TopologySortOperations(*graph)) { if (!node->IsOp()) continue; auto* op_desc = node->Op(); if (op_desc->Type() == "feed" || op_desc->Type() == "fetch") continue; if (op_desc->Type() == "batch_norm") { auto vecs = op_desc->Input("Bias"); for (auto s : vecs) { weights_should_be_fp32.insert(s); } vecs = op_desc->Input("Mean"); for (auto s : vecs) { weights_should_be_fp32.insert(s); } vecs = op_desc->Input("Scale"); for (auto s : vecs) { weights_should_be_fp32.insert(s); } vecs = op_desc->Input("Variance"); for (auto s : vecs) { weights_should_be_fp32.insert(s); } } } for (const auto& param_name : parameters) { auto* var = scope.FindLocalVar(param_name); if (var->IsType() || var->IsType()) { auto* t = var->GetMutable(); framework::Tensor mixed_tensor; mixed_tensor.Resize(t->dims()); auto* data = t->mutable_data(platform::CPUPlace()); if (mixed_precision == phi::DataType::FLOAT16 && !weights_should_be_fp32.count(param_name)) { mixed_tensor.set_type(paddle::experimental::DataType::FLOAT16); auto* mixed_data = mixed_tensor.mutable_data(platform::CPUPlace()); for (int i = 0; i < t->numel(); i++) { mixed_data[i] = static_cast(data[i]); } t->clear(); paddle::framework::TensorCopySync(mixed_tensor, place, t); } else if (mixed_precision == phi::DataType::BFLOAT16 && !weights_should_be_fp32.count(param_name)) { mixed_tensor.set_type(paddle::experimental::DataType::BFLOAT16); auto* mixed_data = mixed_tensor.mutable_data(platform::CPUPlace()); for (int i = 0; i < t->numel(); i++) { mixed_data[i] = static_cast(data[i]); } t->clear(); paddle::framework::TensorCopySync(mixed_tensor, place, t); } } } auto StrToBinary = [](const std::string& path, const std::string& str) { std::ofstream file(path.c_str(), std::ios::binary); file.write(str.c_str(), str.size()); file.close(); }; StrToBinary(mixed_model_file, mixed_program_desc.Proto()->SerializeAsString()); StrToBinary(mixed_params_file, serialize_params(&scope, parameters)); } } // namespace analysis } // namespace inference } // namespace paddle