// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/api/analysis_predictor.h" #include #include #include #include #include #include #include #include #include #include "paddle/fluid//platform/device/gpu/gpu_types.h" #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/feed_fetch_type.h" #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/framework/naive_executor.h" #include "paddle/fluid/framework/op_proto_maker.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/transfer_scope_cache.h" #include "paddle/fluid/framework/var_type_traits.h" #include "paddle/fluid/framework/version.h" #include "paddle/fluid/inference/analysis/helper.h" #include "paddle/fluid/inference/analysis/pass_result_info.h" #include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h" #include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/infer_context.h" #include "paddle/fluid/inference/api/paddle_analysis_config.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_inference_pass.h" #include "paddle/fluid/inference/api/resource_manager.h" #include "paddle/fluid/inference/utils/io_utils.h" #include "paddle/fluid/inference/utils/model_utils.h" #include "paddle/fluid/inference/utils/singleton.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/platform/cpu_helper.h" #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/profiler.h" #include "paddle/phi/api/ext/op_meta_info.h" #include "paddle/phi/common/backend.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/common/place.h" #include "paddle/phi/core/enforce.h" #include "paddle/utils/string/split.h" #if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) #include "paddle/fluid/distributed/fleet_executor/fleet_executor.h" #include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h" #include "paddle/fluid/distributed/fleet_executor/task_node.h" #endif #ifdef PADDLE_WITH_MKLML #include "paddle/fluid/platform/dynload/mklml.h" #endif #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/inference/api/mkldnn_quantizer.h" #endif #ifdef PADDLE_WITH_ONNXRUNTIME #include "paddle/fluid/inference/api/onnxruntime_predictor.h" #endif #ifdef PADDLE_WITH_TENSORRT #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/helper.h" #include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h" #endif #ifdef PADDLE_WITH_IPU #include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h" #endif namespace paddle { using inference::Singleton; #ifdef PADDLE_WITH_TENSORRT using inference::tensorrt::TRTCalibratorEngine; using inference::tensorrt::TRTCalibratorEngineManager; using inference::tensorrt::TRTInt8Calibrator; #endif int AnalysisPredictor::clone_num_ = 1; namespace { bool IsPersistable(const framework::VarDesc *var) { if (var->Persistable() && var->GetType() != framework::proto::VarType::FEED_MINIBATCH && var->GetType() != framework::proto::VarType::FETCH_LIST && var->GetType() != framework::proto::VarType::RAW) { return true; } return false; } phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) { switch (precision) { case AnalysisConfig::Precision::kFloat32: return phi::DataType::FLOAT32; case AnalysisConfig::Precision::kHalf: return phi::DataType::FLOAT16; case AnalysisConfig::Precision::kBf16: return phi::DataType::BFLOAT16; case AnalysisConfig::Precision::kInt8: return phi::DataType::INT8; default: PADDLE_THROW(paddle::platform::errors::InvalidArgument( "Paddle Inference not support precision. We now only support " "Float32, Half, Bfloat16 and Int8")); return phi::DataType::FLOAT32; } } phi::Backend ConvertBackend(paddle_infer::PlaceType backend) { switch (backend) { case paddle_infer::PlaceType::kGPU: // NOTE: phi also support phi::Backend::GPUDNN. return phi::Backend::GPU; case paddle_infer::PlaceType::kNPU: return phi::Backend::NPU; case paddle_infer::PlaceType::kXPU: return phi::Backend::XPU; case paddle_infer::PlaceType::kCPU: return phi::Backend::CPU; case paddle_infer::PlaceType::kIPU: return phi::Backend::IPU; default: PADDLE_THROW(paddle::platform::errors::InvalidArgument( "Paddle Inference not support backend, we now only support GPU, XPU, " "NPU and CPU.")); return phi::Backend::CPU; } } } // namespace bool PaddleTensorToLoDTensor(const PaddleTensor &pt, phi::DenseTensor *t, const platform::Place &place) { framework::DDim ddim = phi::make_ddim(pt.shape); void *input_ptr; if (pt.dtype == PaddleDType::INT64) { input_ptr = t->mutable_data(ddim, place); } else if (pt.dtype == PaddleDType::FLOAT32) { input_ptr = t->mutable_data(ddim, place); } else if (pt.dtype == PaddleDType::INT32) { input_ptr = t->mutable_data(ddim, place); } else if (pt.dtype == PaddleDType::FLOAT16) { input_ptr = t->mutable_data(ddim, place); } else { LOG(ERROR) << "unsupported feed type " << pt.dtype; return false; } // NOTE(Aurelius84): Some kernels support zero shape input // without memory holder, we should skip enforce logic. bool has_zero_dim = (phi::product(ddim) == 0); VLOG(3) << "Found zero dim: " << has_zero_dim << " from input with ddim: " << ddim; if (!has_zero_dim) { PADDLE_ENFORCE_NOT_NULL( input_ptr, paddle::platform::errors::Fatal( "Cannot convert to LoDTensor because LoDTensor creation failed.")); PADDLE_ENFORCE_NOT_NULL( pt.data.data(), paddle::platform::errors::InvalidArgument( "The data contained in the input PaddleTensor is illegal.")); PADDLE_ENFORCE_EQ( pt.data.length(), t->numel() * paddle::experimental::SizeOf(t->dtype()), paddle::platform::errors::InvalidArgument( "The data contained in the input PaddleTensor had wrong length.")); } if (platform::is_cpu_place(place)) { // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy. if (input_ptr != nullptr) { std::memcpy( static_cast(input_ptr), pt.data.data(), pt.data.length()); } } else if (platform::is_ipu_place(place)) { #ifdef PADDLE_WITH_IPU std::memcpy( static_cast(input_ptr), pt.data.data(), pt.data.length()); #else PADDLE_THROW(paddle::platform::errors::Fatal( "Not compile with WITH_IPU, should not reach here.")); #endif } else if (platform::is_gpu_place(place)) { PADDLE_ENFORCE_EQ(platform::is_xpu_place(place), false, platform::errors::InvalidArgument( "Only one choice can be made between CPU and XPU.")); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto *dev_ctx = static_cast(pool.Get(place)); auto dst_gpu_place = place; memory::Copy(dst_gpu_place, static_cast(input_ptr), platform::CPUPlace(), pt.data.data(), pt.data.length(), dev_ctx->stream()); #else PADDLE_THROW(paddle::platform::errors::Fatal( "Not compile with CUDA, should not reach here.")); #endif } else if (platform::is_xpu_place(place)) { #ifdef PADDLE_WITH_XPU auto dst_xpu_place = place; memory::Copy(dst_xpu_place, static_cast(input_ptr), platform::CPUPlace(), pt.data.data(), pt.data.length()); #else PADDLE_THROW(paddle::platform::errors::Fatal( "Not compile with XPU, should not reach here.")); #endif } else { PADDLE_THROW(paddle::platform::errors::InvalidArgument( "The analysis predictor supports CPU, GPU and XPU now.")); } // TODO(Superjomn) Low performance, need optimization for heavy LoD copy. framework::LoD lod; for (auto &level : pt.lod) { lod.emplace_back(level); } t->set_lod(lod); return true; } bool AnalysisPredictor::Init( const std::shared_ptr &parent_scope, const std::shared_ptr &program) { VLOG(3) << "Predictor::init()"; if (config_.with_profile_) { LOG(WARNING) << "Profiler is activated, which might affect the performance"; auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll : platform::ProfilerState::kCPU; platform::EnableProfiler(tracking_device); } else { VLOG(2) << "Profiler is deactivated, and no profiling report will be " "generated."; } if (!status_is_cloned_) { root_predictor_id_ = predictor_id_; } // no matter with or without MKLDNN paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads()); if (!PrepareScope(parent_scope)) { return false; } InitPlace(); if (!CreateExecutor()) { return false; } if (!PrepareProgram(program)) { return false; } // Get the feed_target_names and fetch_target_names PrepareFeedFetch(); // Prepare executor, create local variables. if (!PrepareExecutor()) { return true; } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) // TODO(inference): Now only gpu with external stream support private // device_context. if (config_.use_gpu_ && config_.use_external_stream_) { private_context_ = true; } if (private_context_) { if (!status_is_cloned_) { predictor_stream_ = config_.GetExecStream(); } // NOTE: If the external_stream equals to global_device_contexts's stream, // then fallback. auto global_stream = static_cast( platform::DeviceContextPool::Instance().Get(place_)) ->stream(); if (predictor_stream_ != global_stream) { InitResourceManager(predictor_stream_); InitDeviceContexts(); } } #endif inference::DisplayMemoryInfo(place_, "Init predictor"); return true; } void AnalysisPredictor::InitPlace() { if (config_.use_gpu()) { PADDLE_ENFORCE_EQ(config_.use_xpu(), false, platform::errors::InvalidArgument( "Only one choice can be made between CPU and XPU.")); place_ = paddle::platform::CUDAPlace(config_.gpu_device_id()); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (config_.thread_local_stream_enabled()) { LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. " "Please use config.SetExecStream instead."; } #endif } else if (config_.use_xpu()) { if (config_.lite_engine_enabled()) { #ifdef LITE_SUBGRAPH_WITH_XPU // Currently, Paddle-Lite's XPU user interface only supports the transfer // of Host data pointers. If it is currently used as a subgraph, execution // efficiency will be sacrificed, so it is temporarily set to cpu place. // And, the current lite engine of xpu must execute all parts of the // model. place_ = paddle::platform::CPUPlace(); #else PADDLE_THROW(platform::errors::Unavailable( "You tried to use an XPU lite engine, but Paddle was not compiled " "with it.")); #endif // LITE_SUBGRAPH_WITH_XPU } else { #ifdef PADDLE_WITH_XPU place_ = paddle::platform::XPUPlace(config_.xpu_device_id()); #else PADDLE_THROW(platform::errors::Unavailable( "You tried to use XPU forward propagation (inference without lite " "engine), but Paddle was not compiled " "with WITH_XPU.")); #endif // PADDLE_WITH_XPU } } else if (config_.use_npu()) { #ifdef PADDLE_WITH_ASCEND_CL place_ = paddle::platform::NPUPlace(config_.npu_device_id()); #else PADDLE_THROW(platform::errors::Unavailable( "You tried to use NPU forward propagation, but Paddle was not compiled " "with WITH_ASCEND_CL.")); #endif } else if (config_.NNAdapter().use_nnadapter) { if (config_.lite_engine_enabled()) { place_ = paddle::platform::CPUPlace(); #ifndef LITE_SUBGRAPH_WITH_NNADAPTER PADDLE_THROW( platform::errors::Unavailable("You tried to use an NNAdapter lite " "engine, but Paddle was not compiled " "with it.")); #endif // LITE_SUBGRAPH_WITH_NNADAPTER } else { PADDLE_THROW( platform::errors::Unavailable("You tried to use NNadapter forward " "propagation (inference without lite " "engine), but Paddle was not compiled " "with LITE_WITH_NNADAPTER.")); } } else if (config_.use_ipu()) { #ifdef PADDLE_WITH_IPU place_ = paddle::platform::IPUPlace(); #else PADDLE_THROW(platform::errors::Unavailable( "You tried to use IPU forward propagation, but Paddle was not compiled " "with WITH_IPU.")); #endif } else if (config_.use_custom_device()) { #ifdef PADDLE_WITH_CUSTOM_DEVICE place_ = paddle::platform::CustomPlace(config_.custom_device_type()); #else PADDLE_THROW(platform::errors::Unavailable( "You tried to use CustomDevice forward propagation, but Paddle was not " "compiled " "with WITH_CUSTOM_DEVICE.")); #endif } else { place_ = paddle::platform::CPUPlace(); } } void AnalysisPredictor::InitResourceManager(void *stream) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) predictor_stream_ = ResourceManager::Instance().InitGPUResource(place_, stream); #endif } void AnalysisPredictor::InitDeviceContexts() { // Init GPUContext. #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (place_.GetType() == phi::AllocationType::GPU) { device_contexts_.emplace( place_, std::async(std::launch::deferred, [=] { auto *gpu_resource = ResourceManager::Instance().GetGPUResource(predictor_stream_); auto *gpu_context = new InferGPUContext(place_); gpu_context->SetAllocator( memory::allocation::AllocatorFacade::Instance() .GetAllocator(place_, gpu_resource->GetStream()) .get()); gpu_context->SetPinnedAllocator( memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CUDAPinnedPlace()) .get()); gpu_context->SetHostAllocator( memory::allocation::AllocatorFacade::Instance() .GetAllocator(platform::CPUPlace()) .get()); gpu_context->SetZeroAllocator( memory::allocation::AllocatorFacade::Instance() .GetZeroAllocator(place_) .get()); gpu_context->SetHostZeroAllocator( memory::allocation::AllocatorFacade::Instance() .GetZeroAllocator(platform::CPUPlace()) .get()); gpu_context->SetGenerator( framework::DefaultCUDAGenerator(place_.GetDeviceId()).get()); gpu_context->SetHostGenerator(framework::DefaultCPUGenerator().get()); gpu_context->SetStream(gpu_resource->GetStream()); gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator()); gpu_context->SetBlasTensorCoreHandle( gpu_resource->GetBlasTensorCoreHandleCreator()); gpu_context->SetBlasTF32Handle( gpu_resource->GetBlasTF32TensorCoreHandleCreator()); gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator()); gpu_context->SetSolverHandle( gpu_resource->GetSolverDnHandleCreator()); gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator()); gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDeviceCreator()); gpu_context->SetComputeCapability( gpu_resource->GetGpuComputeCapability()); gpu_context->SetMaxThreadsPerBlock( gpu_resource->GetGpuMaxThreadsPerBlock()); gpu_context->SetMaxThreadsPerMultiProcessor( gpu_resource->GetGpuMaxThreadsPerMp()); gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize()); gpu_context->SetMultiProcessors( gpu_resource->GetGPUMultiProcessors()); gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion()); gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion()); VLOG(1) << "thread id is " << std::this_thread::get_id() << ", stream id is " << reinterpret_cast(gpu_resource->GetStream()) << ", allotor ptr is " << reinterpret_cast( memory::allocation::AllocatorFacade::Instance() .GetAllocator(place_, gpu_resource->GetStream()) .get()); return std::unique_ptr(gpu_context); })); } #endif // TODO(Inference): Support other backends. } void *AnalysisPredictor::GetExecStream() const { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (place_.GetType() == phi::AllocationType::GPU) { if (private_context_) { return predictor_stream_; } else { paddle::platform::DeviceContextPool &pool = paddle::platform::DeviceContextPool::Instance(); return reinterpret_cast(pool.Get(place_)) ->stream(); } } else { return nullptr; } return nullptr; #else // TODO(inference): Support other backends. return nullptr; #endif } const void *AnalysisPredictor::GetDeviceContexts() const { if (private_context_) { return &device_contexts_; } else { paddle::platform::DeviceContextPool &pool = paddle::platform::DeviceContextPool::Instance(); const auto &dev_ctxs = pool.device_contexts(); return &dev_ctxs; } } bool AnalysisPredictor::PrepareScope( const std::shared_ptr &parent_scope) { if (parent_scope) { PADDLE_ENFORCE_NOT_NULL( parent_scope, platform::errors::PreconditionNotMet( "Both program and parent_scope should be set in Clone mode.")); scope_ = parent_scope; status_is_cloned_ = true; } else { paddle::framework::InitDevices(); paddle::framework::InitDefaultKernelSignatureMap(); // TODO(wilber): we need to release memory occupied by weights. scope_.reset(new paddle::framework::Scope()); status_is_cloned_ = false; } sub_scope_ = &scope_->NewScope(); return true; } bool AnalysisPredictor::PrepareProgram( const std::shared_ptr &program) { if (!program) { if (!LoadProgramDesc()) return false; // If not cloned, the parameters should be loaded. // If config_.ir_optim() is True, parameters is loaded in // OptimizeInferenceProgram(), but other persistable variables // (like RAW type var) are not created in scope. // If config_.ir_optim() is False, parameters is loaded in LoadParameters(), // still need to create other persistable variables. // So in both case, create persistable variables at first. executor_->CreateVariables(*inference_program_, 0, true, sub_scope_); // if enable_ir_optim_ is false, // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will // not be executed. model_precision_ = paddle::inference::GetModelPrecision(*inference_program_); OptimizeInferenceProgram(); } else { // If the program is passed from external, no need to optimize it, this // logic is used in the clone scenario. inference_program_ = program; if (config_.apply_optim_) { VLOG(3) << "apply_optim is enabled, will call OptimizeInferenceProgram()."; OptimizeInferenceProgram(); } } executor_->CreateVariables(*inference_program_, 0, false, sub_scope_); return true; } bool AnalysisPredictor::CreateExecutor() { executor_.reset(new paddle::framework::NaiveExecutor(place_)); return true; } static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) { // here is prepare data optimization related bad cases: // let's assume an op behind conditional_block and if conditional_block // chooses branch 1, the op need to call prepare data. else the op don't need // to call prepare data. In running, if predictor chooses branch 2, then // optimization takes effect, later issue is followed if predictor chooses // branch 1, because the op lost chance to prepare data. std::vector op_type = {"conditional_block_infer", "select_input"}; for (const auto &type : op_type) { if (op->Type() == type) { return true; } } return false; } static void DisablePrepareDataOpt( std::shared_ptr inference_program, int block, bool pre_disable_opt) { bool disable_opt = false; auto &infer_block = inference_program->Block(block); for (auto *op : infer_block.AllOps()) { if (disable_opt || pre_disable_opt) { op->SetAttr("inference_force_prepare_data", true); } if (op->HasAttr("sub_block")) { int blockID = op->GetBlockAttrId("sub_block"); DisablePrepareDataOpt( inference_program, blockID, disable_opt || pre_disable_opt); } // disable prepare data if unfriendly op is found if (!disable_opt) { disable_opt = IsPrepareDataOptTargetOp(op); } } } bool AnalysisPredictor::PrepareExecutor() { #if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) if (config_.dist_config().use_dist_model()) { VLOG(3) << "use_dist_model is enabled, will init FleetExecutor."; return PrepareFleetExecutor(); } #endif DisablePrepareDataOpt(inference_program_, 0, false); executor_->Prepare( sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_); if (config_.enable_memory_optim_) { auto *pass_res_info = inference::analysis::PassResultInfoForRuntime::Instance(); auto reuse_table = pass_res_info->Get>( root_predictor_id_, "memory_optimize_pass"); executor_->MakeReusePlan(reuse_table); } PADDLE_ENFORCE_NOT_NULL(sub_scope_, platform::errors::PreconditionNotMet( "The sub_scope should not be nullptr.")); return true; } #if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) bool AnalysisPredictor::PrepareFleetExecutor() { VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()"; if (config_.dist_config().nranks() > 1 && !CommInit()) { return false; } task_node_.reset(new distributed::TaskNode(inference_program_.get(), config_.dist_config().rank())); // With auto cut, there is no concept of pp, no need to add dependency. task_node_->SetType("Compute"); task_node_->Init(config_.use_feed_fetch_ops_enabled()); executor_desc_ = distributed::FleetExecutorDesc(); executor_desc_.set_cur_rank(config_.dist_config().rank()); std::unordered_map id_to_rank; for (int i = 0; i < config_.dist_config().nranks(); ++i) { distributed::RankInfo *rank_info = executor_desc_.add_cluster_info(); rank_info->set_rank(i); rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]); id_to_rank.insert({i, i}); } fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_)); // NOTE: Vars of feed fetch ops are not persistable, // which will result in that those vars will be created in // the subscope (microscope) in fleet executor. This will // cause that the GetInputTensor/GetOutputTensor funct // in analysis predictor cannot find those vars in the scope // returned by the DistModel, since DistModel only return the // root scope. So, those vars must to be created in the root // scope instead of in the microscope std::vector feed_fetch_vars; for (auto pair : idx2feeds_) { feed_fetch_vars.emplace_back(pair.second); } for (auto pair : idx2fetches_) { feed_fetch_vars.emplace_back(pair.second); } fleet_exe_->Init(config_.dist_config().carrier_id(), *(inference_program_.get()), scope_.get(), place_, 1, {task_node_.get()}, id_to_rank, feed_fetch_vars); return true; } bool AnalysisPredictor::CommInit() { std::map> ring_id_to_ranks{}; std::map> rank_to_ring_ids{}; if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) { VLOG(3) << "Load converter config failed, DistModel init failed."; return false; } std::unique_ptr comm_init_program( new framework::ProgramDesc()); framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0); std::vector &ring_ids = rank_to_ring_ids[config_.dist_config().rank()]; int64_t order = 0; std::string var_name_base = "comm_init_"; for (int64_t ring_id : ring_ids) { VLOG(3) << "Init comm for ring id: " << ring_id; int64_t ranks_in_group = ring_id_to_ranks[ring_id].size(); int64_t rank_in_group = 0; std::vector &ranks = ring_id_to_ranks[ring_id]; for (int64_t rank : ranks) { if (config_.dist_config().rank() == rank) { break; } rank_in_group += 1; } std::vector peer_endpoints; for (int64_t rank : ranks) { if (config_.dist_config().rank() == rank) { continue; } peer_endpoints.emplace_back( config_.dist_config().trainer_endpoints()[rank]); } InsertCommOp(var_name_base + std::to_string(order), ranks_in_group, rank_in_group, peer_endpoints, comm_init_block, ring_id); order += 1; } framework::NaiveExecutor e(place_); e.CreateVariables(*comm_init_program, 0, true, scope_.get()); e.Prepare(scope_.get(), *comm_init_program, 0, false); e.Run(); VLOG(3) << "Comm init successful."; return true; } void AnalysisPredictor::InsertCommOp( std::string tmp_var_name, int nranks, int rank, const std::vector &peer_endpoints, framework::BlockDesc *block, int ring_id) { /* * tmp_var_name: the var name for var comm_id * nranks: number of total ranks * rank: the rank of local rank in the comm group * peer_endpoints: peer's endpoints * block: the block where to insert the comm ops * ring_id: the ring_id to be inited */ const std::string &endpoint = config_.dist_config().current_endpoint(); std::stringstream ss; ss << "Init comm with tmp var: " << tmp_var_name << ". The ring id is: " << ring_id << ". The group has: " << nranks << " ranks. Current rank in the group is: " << rank << ". The endpoint is: " << endpoint << ". Peer endpoints are: "; for (auto ep : peer_endpoints) { ss << ep << ", "; } VLOG(3) << ss.str(); if (config_.use_gpu()) { framework::VarDesc *new_var = block->Var(tmp_var_name); new_var->SetType(framework::proto::VarType::RAW); new_var->SetPersistable(true); framework::OpDesc *gen_nccl_id_op = block->AppendOp(); gen_nccl_id_op->SetType("c_gen_nccl_id"); gen_nccl_id_op->SetOutput("Out", {tmp_var_name}); gen_nccl_id_op->SetAttr("rank", rank); gen_nccl_id_op->SetAttr("endpoint", config_.dist_config().current_endpoint()); gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints); gen_nccl_id_op->SetAttr("ring_id", ring_id); gen_nccl_id_op->SetAttr("op_role", static_cast(framework::OpRole::kForward)); gen_nccl_id_op->CheckAttrs(); framework::OpDesc *comm_init_op = block->AppendOp(); comm_init_op->SetType("c_comm_init"); comm_init_op->SetInput("X", {tmp_var_name}); comm_init_op->SetAttr("rank", rank); comm_init_op->SetAttr("nranks", nranks); comm_init_op->SetAttr("ring_id", ring_id); comm_init_op->SetAttr("op_role", static_cast(framework::OpRole::kForward)); comm_init_op->CheckAttrs(); } else { LOG(WARNING) << "DistModelInf doesn't init comm."; // TODO(fleet exe dev): comm init for more devices } } bool AnalysisPredictor::LoadConverterConfig( std::map> *ring_id_to_ranks, std::map> *rank_to_ring_ids) { VLOG(3) << "Going to load converter config from: " << config_.dist_config().comm_init_config() << "\n"; std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in); PADDLE_ENFORCE_EQ( static_cast(fin.is_open()), true, platform::errors::NotFound( "Cannot open file %s, please confirm whether the file is normal.", config_.dist_config().comm_init_config())); std::string line; bool ring_to_rank{true}; // Reading config from file, the config file should like these format // [ring_id -> ranks] // 0,0,1,2,3 // 1,0,1 // 2,2,3 // 21,0,1 // 22,1,2 // 23,2,3 // [rank -> ring_ids] // 0,0,1,21 // 1,0,1,21,22 // 2,0,2,22,23 // 3,0,2,23 while (std::getline(fin, line)) { std::vector one_line = paddle::string::Split(line, ','); if (one_line.size() == 1) { // start a new section of the config if (line == "[ring_id -> ranks]") { ring_to_rank = true; } else if (line == "[rank -> ring_ids]") { ring_to_rank = false; } } else { // parse key - values pairs in one section int64_t key = std::stoll(one_line[0]); for (size_t i = 1; i < one_line.size(); ++i) { int64_t val = std::stoll(one_line[i]); if (ring_to_rank) { if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) { ring_id_to_ranks->insert({key, std::vector()}); } ring_id_to_ranks->at(key).emplace_back(val); } else { if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) { rank_to_ring_ids->insert({key, std::vector()}); } rank_to_ring_ids->at(key).emplace_back(val); } // NOTE: add more configuration sections here } } } std::stringstream ss; ss << "Loaded the following converter config:\n"; ss << "ring_id_to_ranks:\n"; for (auto pair : *ring_id_to_ranks) { int64_t key = pair.first; ss << "\t" << key << "\t->\t"; for (auto value : pair.second) { ss << value << "\t"; } ss << "\n"; } ss << "rank_to_ring_ids:\n"; for (auto pair : *rank_to_ring_ids) { int64_t key = pair.first; ss << "\t" << key << "\t->\t"; for (auto value : pair.second) { ss << value << "\t"; } ss << "\n"; } VLOG(3) << ss.str(); return true; } #endif void AnalysisPredictor::MkldnnPreSet(const std::vector &inputs) { #ifdef PADDLE_WITH_MKLDNN std::vector> inputs_shape; for (size_t i = 0; i < inputs.size(); ++i) { inputs_shape.emplace_back(inputs[i].shape); } MkldnnPreSet(inputs_shape); #endif } void AnalysisPredictor::MkldnnPreSet( const std::vector> &inputs_shape) { #ifdef PADDLE_WITH_MKLDNN VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id=" << phi::OneDNNContext::tls().get_cur_mkldnn_session_id(); // In cache clearing mode. if (config_.mkldnn_cache_capacity_ > 0) { VLOG(2) << "In mkldnn cache clear mode."; phi::OneDNNContext::tls().set_cur_mkldnn_session_id( phi::OneDNNContextThreadLocals::kMKLDNNSessionID_CacheClearing); // Set current_input_shape for caching dynamic shape. std::stringstream ss; for (size_t i = 0; i < inputs_shape.size(); ++i) { for (size_t j = 0; j < inputs_shape[i].size(); ++j) { ss << inputs_shape[i][j] << "-"; } } VLOG(2) << "Set input shape=" << ss.str(); phi::OneDNNContext::tls().set_cur_input_shape_str(ss.str()); } phi::OneDNNContext::tls().set_cur_input_shape_cache_capacity( config_.mkldnn_cache_capacity_); #endif } void AnalysisPredictor::MkldnnPostReset() { #ifdef PADDLE_WITH_MKLDNN // In cache clearing mode. if (config_.mkldnn_cache_capacity_ > 0 && static_cast( (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace())) ->GetCachedObjectsNumber() > 0) { if (VLOG_IS_ON(2)) { auto shape_blob_size = static_cast( (&platform::DeviceContextPool::Instance()) ->Get(platform::CPUPlace())) ->GetShapeBlobSize(); CHECK_LE(shape_blob_size, static_cast(config_.mkldnn_cache_capacity_)); } // We cannot reset to the default cache settings // as there maybe CopyToCPU method used and oneDNN // primitives are used there so cache would grow } #endif } bool AnalysisPredictor::Run(const std::vector &inputs, std::vector *output_data, int batch_size) { paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads()); #ifdef PADDLE_WITH_MKLDNN if (config_.use_mkldnn_) MkldnnPreSet(inputs); #endif VLOG(3) << "Predictor::predict"; inference::Timer timer; timer.tic(); // set feed variable framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get(); PADDLE_ENFORCE_NOT_NULL( scope, platform::errors::PreconditionNotMet("The scope should not be nullptr.")); if (!SetFeed(inputs, scope)) { LOG(ERROR) << "fail to set feed"; return false; } #ifdef PADDLE_WITH_TENSORRT if (config_.tensorrt_engine_enabled()) { inference::tensorrt::TensorRTEngine::predictor_id_per_thread = predictor_id_; VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: " << inference::tensorrt::TensorRTEngine::predictor_id_per_thread; } #endif // Run the inference program // if share variables, we need not create variables executor_->Run(); // get fetch variable if (!GetFetch(output_data, scope)) { LOG(ERROR) << "fail to get fetches"; return false; } VLOG(3) << "predict cost: " << timer.toc() << "ms"; // All the containers in the scope will be hold in inference, but the // operators assume that the container will be reset after each batch. // Here is a bugfix, collect all the container variables, and reset then to a // bool; the next time, the operator will call MutableData and construct a new // container again, so that the container will be empty for each batch. if (sub_scope_) { tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_); } tensor_array_batch_cleaner_.ResetNoTensorVars(); // recover the cpu_math_library_num_threads to 1, in order to avoid thread // conflict when integrating it into deployment service. paddle::platform::SetNumThreads(1); #ifdef PADDLE_WITH_MKLDNN if (config_.use_mkldnn_) MkldnnPostReset(); #endif #if defined(PADDLE_WITH_MKLML) // Frees unused memory allocated by the Intel® MKL Memory Allocator to // avoid memory leak. See: // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers platform::dynload::MKL_Free_Buffers(); #endif return true; } bool AnalysisPredictor::SetFeed(const std::vector &inputs, framework::Scope *scope) { VLOG(3) << "Predictor::set_feed"; if (inputs.size() != feeds_.size()) { LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get " << inputs.size(); return false; } // Cache the inputs memory for better concurrency performance. feed_tensors_.resize(inputs.size()); for (size_t i = 0; i < inputs.size(); ++i) { phi::DenseTensor *input = &feed_tensors_[i]; if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) { return false; } int idx = -1; if (config_.specify_input_name_) { auto name = inputs[i].name; if (feed_names_.find(name) == feed_names_.end()) { LOG(ERROR) << "feed names from program do not have name: [" << name << "] from specified input"; } idx = feed_names_[name]; } else { idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col")); } framework::SetFeedVariable(scope, *input, "feed", idx); } return true; } template void AnalysisPredictor::GetFetchOne(const phi::DenseTensor &fetch, PaddleTensor *output) { // set shape. auto shape = phi::vectorize(fetch.dims()); output->shape.assign(shape.begin(), shape.end()); // set data. const T *data = fetch.data(); int num_elems = inference::VecReduceToInt(shape); output->data.Resize(num_elems * sizeof(T)); // The fetched tensor output by fetch op, should always in CPU memory, so just // copy. memcpy(output->data.data(), data, num_elems * sizeof(T)); // set lod output->lod.clear(); for (auto &level : fetch.lod()) { output->lod.emplace_back(level.begin(), level.end()); } } bool AnalysisPredictor::GetFetch(std::vector *outputs, framework::Scope *scope) { VLOG(3) << "Predictor::get_fetch"; outputs->resize(fetches_.size()); for (size_t i = 0; i < fetches_.size(); ++i) { int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col")); PADDLE_ENFORCE_EQ( static_cast(idx), i, platform::errors::InvalidArgument( "Fetch op's col attr(%d) should be equal to the index(%d)", idx, i)); framework::FetchType &fetch_var = framework::GetFetchVariable(*scope, "fetch", idx); auto &fetch = PADDLE_GET(phi::DenseTensor, fetch_var); auto type = framework::TransToProtoVarType(fetch.dtype()); auto output = &(outputs->at(i)); output->name = fetches_[idx]->Input("X")[0]; if (type == framework::proto::VarType::FP32) { GetFetchOne(fetch, output); output->dtype = PaddleDType::FLOAT32; } else if (type == framework::proto::VarType::INT64) { GetFetchOne(fetch, output); output->dtype = PaddleDType::INT64; } else if (type == framework::proto::VarType::INT32) { GetFetchOne(fetch, output); output->dtype = PaddleDType::INT32; } else if (type == framework::proto::VarType::FP16) { GetFetchOne(fetch, output); output->dtype = PaddleDType::FLOAT16; } else { LOG(ERROR) << "unknown type, only support float32, float16, int64 and " "int32 now."; } } return true; } void AnalysisPredictor::PrepareArgument() { VLOG(3) << "AnalysisPredictor::PrepareArgument"; // Init std::unique_ptr argument_. argument_.reset(new Argument); argument_->SetUseGPU(config_.use_gpu()); argument_->SetUseCutlass(config_.use_cutlass_); argument_->SetUseFcPadding(config_.use_fc_padding()); argument_->SetGPUDeviceId(config_.gpu_device_id()); argument_->SetEnableIrOptim(config_.enable_ir_optim_); argument_->SetEnableMemoryOptim(config_.enable_memory_optim()); argument_->SetModelFromMemory(config_.model_from_memory_); // Analyze inference_program argument_->SetPredictorID(predictor_id_); argument_->SetRootPredictorID(root_predictor_id_); argument_->SetOptimCacheDir(config_.opt_cache_dir_); if (!config_.model_dir().empty()) { argument_->SetModelDir(config_.model_dir()); } else { PADDLE_ENFORCE_EQ(config_.prog_file().empty(), false, platform::errors::PreconditionNotMet( "Either model_dir or prog_file should be set.")); argument_->SetModelProgramPath(config_.prog_file()); argument_->SetModelParamsPath(config_.params_file()); } // For JITLayer argument_->SetSkipLoadParams(config_.skip_load_params_); argument_->SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_); argument_->SetTensorRtUseOSS(config_.trt_use_varseqlen_); argument_->SetTensorRtWithInterleaved(config_.trt_with_interleaved_); argument_->SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_); argument_->SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_); argument_->SetMinInputShape(config_.min_input_shape_); argument_->SetMaxInputShape(config_.max_input_shape_); argument_->SetOptimInputShape(config_.optim_input_shape_); argument_->SetTensorRtTunedDynamicShape( config_.tuned_tensorrt_dynamic_shape()); if (config_.use_gpu() && config_.tensorrt_engine_enabled()) { LOG(INFO) << "TensorRT subgraph engine is enabled"; argument_->SetUseTensorRT(true); argument_->SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_); argument_->SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_); argument_->SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_); argument_->SetTensorRtDisabledOPs(config_.trt_disabled_ops_); argument_->SetTensorRtUseDLA(config_.trt_use_dla_); argument_->SetTensorRtDLACore(config_.trt_dla_core_); argument_->SetTensorRtUseStaticEngine(config_.trt_use_static_engine_); argument_->SetTensorRtUseCalibMode(config_.trt_use_calib_mode_); argument_->SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_); argument_->SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path()); argument_->SetTensorRtAllowBuildAtRuntime( config_.trt_allow_build_at_runtime()); argument_->SetTensorRtUseInspector(config_.trt_use_inspector_); argument_->SetTrtEngineMemorySharing(config_.trt_engine_memory_sharing()); } if (config_.dlnne_enabled()) { LOG(INFO) << "Dlnne subgraph is enabled"; argument_->SetUseDlnne(true); argument_->SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_); argument_->SetDlnneMaxBatchSize(config_.dlnne_max_batchsize_); argument_->SetDlnneUseStaticBatch(config_.dlnne_use_static_batch_); argument_->SetDlnneWeightShareMode(config_.dlnne_weight_share_mode_); argument_->SetDlnneDisableNodesByOutputs( config_.dlnne_disable_nodes_by_outputs_); argument_->SetDlnneInputShapeDict(config_.dlnne_input_shape_dict_); argument_->SetDlnneUseCalibMode(config_.dlnne_use_calib_mode_); argument_->SetDlnnePrecisionMode(config_.dlnne_precision_mode_); } if (config_.lite_engine_enabled()) { argument_->SetCpuMathLibraryNumThreads( config_.cpu_math_library_num_threads()); argument_->SetLitePrecisionMode(config_.lite_precision_mode_); argument_->SetLitePassesFilter(config_.lite_passes_filter_); argument_->SetLiteOpsFilter(config_.lite_ops_filter_); argument_->SetLiteZeroCopy(config_.lite_zero_copy_); argument_->SetUseXpu(config_.use_xpu_); argument_->SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_); argument_->SetXpuLocked(config_.xpu_locked_); argument_->SetXpuAutotune(config_.xpu_autotune_); argument_->SetXpuAutotuneFile(config_.xpu_autotune_file_); argument_->SetXpuPrecision(config_.xpu_precision_); argument_->SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_); argument_->SetXpuDeviceId(config_.xpu_device_id_); argument_->SetXpuEnableMultiStream(config_.xpu_enable_multi_stream_); argument_->SetUseOpenCL(config_.use_opencl_); // NNAdapter related argument_->SetUseNNAdapter(config_.NNAdapter().use_nnadapter); argument_->SetNNAdapterDeviceNames( config_.NNAdapter().nnadapter_device_names); argument_->SetNNAdapterContextProperties( config_.NNAdapter().nnadapter_context_properties); argument_->SetNNAdapterModelCacheDir( config_.NNAdapter().nnadapter_model_cache_dir); argument_->SetNNAdapterSubgraphPartitionConfigBuffer( config_.NNAdapter().nnadapter_subgraph_partition_config_buffer); argument_->SetNNAdapterSubgraphPartitionConfigPath( config_.NNAdapter().nnadapter_subgraph_partition_config_path); std::vector buffer_keys; std::vector> buffer_vals; for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) { buffer_keys.emplace_back(it.first); buffer_vals.emplace_back(it.second); } argument_->SetNNAdapterModelCacheToken(buffer_keys); argument_->SetNNAdapterModelCacheBuffer(buffer_vals); LOG(INFO) << "Lite subgraph engine is enabled"; } #ifdef PADDLE_WITH_IPU argument_->SetUseIpu(config_.use_ipu_); argument_->SetIpuDeviceNum(config_.ipu_device_num()); argument_->SetIpuMicroBatchSize(config_.ipu_micro_batch_size_); argument_->SetIpuEnablePipelining(config_.ipu_enable_pipelining_); argument_->SetIpuBatchesPerStep(config_.ipu_batches_per_step_); argument_->SetIpuEnableFp16(config_.ipu_enable_fp16_); argument_->SetIpuReplicaNum(config_.ipu_replica_num_); argument_->SetIpuAvailableMemoryProportion( config_.ipu_available_memory_proportion_); argument_->SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_); argument_->SetIpuEnableModelRuntimeExecutor( config_.ipu_enable_model_runtime_executor_); argument_->SetIpuCustomOpsInfo(config_.ipu_custom_ops_info_); argument_->SetIpuCustomPatterns(config_.ipu_custom_patterns_); #endif argument_->SetUseNpu(config_.use_npu_); argument_->SetNPUDeviceId(config_.npu_device_id()); if (config_.use_mkldnn_) { LOG(INFO) << "MKLDNN is enabled"; argument_->SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_); } if (config_.use_cinn_compiler_) { argument_->SetUseCinnCompiler(config_.use_cinn_compiler_); } #ifdef PADDLE_WITH_MKLDNN if (config_.mkldnn_quantizer_enabled()) { LOG(INFO) << "Quantization is enabled"; argument_->SetQuantizeEnabledOpTypes( config_.mkldnn_quantizer_config()->enabled_op_types()); argument_->SetQuantizeExcludedOpIds( config_.mkldnn_quantizer_config()->excluded_op_ids()); } if (config_.use_mkldnn_bfloat16_) { LOG(INFO) << "Bfloat16 is enabled"; argument_->SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_); } if (config_.use_mkldnn_int8_) { LOG(INFO) << "Int8 is enabled"; argument_->SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_); argument_->SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_); argument_->SetQuantVarScales({}); } #endif #ifdef PADDLE_WITH_CUSTOM_DEVICE argument_->SetUseCustomDevice(config_.use_custom_device()); if (config_.use_custom_device()) { LOG(INFO) << "CustomDevice is enabled"; argument_->SetCustomDeviceType(config_.custom_device_type()); argument_->SetCustomDeviceId(config_.custom_device_id()); } #endif auto *pass_builder = config_.pass_builder(); // TODO(inference): Need to reconstruct the pass_builder, pass should be // processed in a single if (model_precision_ != phi::DataType::FLOAT32) { LOG(INFO) << "Model is mixed precision type with " << model_precision_ << ", we will use a new PassStrategy. Note that only the GPU " "backend is supported for now."; if (!config_.use_cinn_compiler_) { pass_builder->ClearPasses(); const auto &deleted_passes = pass_builder->GetAllDeletedPasses(); if (config_.tensorrt_engine_enabled()) { for (const auto &pass : kTrtLowerPrecisionPasses) { if (deleted_passes.count(pass)) continue; pass_builder->AppendPass(pass); } } else if (config_.use_gpu()) { for (const auto &pass : kGpuLowerPrecisionPasses) { if (deleted_passes.count(pass)) continue; pass_builder->AppendPass(pass); } } } } if (!config_.ir_optim()) { argument_->SetEnableIrOptim(false); if (config_.enable_gpu_mixed_) { argument_->SetEnableIrOptim(true); pass_builder->ClearPasses(); pass_builder->AppendPass("auto_mixed_precision_pass"); LOG(INFO) << "This model run in Paddle-GPU mixed precision mode with no ir " "optimization."; } else { LOG(INFO) << "ir_optim is turned off, no IR pass will be executed."; } } else { if (config_.ir_debug_) { pass_builder->TurnOnDebug(); } if (config_.enable_gpu_mixed_) { LOG(INFO) << "This model run in Paddle-GPU mixed precision mode."; } } argument_->SetDisableLogs(config_.glog_info_disabled()); argument_->SetIrAnalysisPasses(pass_builder->AllPasses()); argument_->SetAnalysisPasses(pass_builder->AnalysisPasses()); argument_->SetScopeNotOwned(scope_.get()); // mixed precison. argument_->SetModelPrecision(static_cast(model_precision_)); argument_->SetMixedBlackList(config_.mixed_black_list_); argument_->SetEnableGPUMixed(config_.enable_gpu_mixed_); argument_->SetMixedPrecisionMode(static_cast( paddle::ConvertPrecision(config_.mixed_precision_mode_))); } // NOTE All the members in AnalysisConfig should be copied to Argument. void AnalysisPredictor::OptimizeInferenceProgram() { PrepareArgument(); #ifdef PADDLE_WITH_TENSORRT if (config_.tensorrt_engine_enabled()) { inference::tensorrt::TensorRTEngine::predictor_id_per_thread = predictor_id_; VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: " << inference::tensorrt::TensorRTEngine::predictor_id_per_thread; } #endif Analyzer().Run(argument_.get()); PADDLE_ENFORCE_EQ( argument_->scope_valid(), true, platform::errors::InvalidArgument("The argument scope should be valid.")); VLOG(5) << "to prepare executor"; ARGUMENT_CHECK_FIELD((argument_.get()), ir_analyzed_program); inference_program_.reset( new framework::ProgramDesc(argument_->ir_analyzed_program()), [](framework::ProgramDesc *prog) { // Note, please do NOT use any member variables, because member variables may // have been destructed in multiple threads. #ifdef PADDLE_WITH_TENSORRT auto &block = prog->Block(0); for (auto &op_desc : block.AllOps()) { if (op_desc->Type() == "tensorrt_engine") { std::string engine_key = PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key")); int engine_predictor_id = PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id")); std::string engine_name = engine_key + std::to_string(engine_predictor_id); if (paddle::inference::Singleton< inference::tensorrt::TRTEngineManager>::Global() .Has(engine_name)) { paddle::inference::Singleton< inference::tensorrt::TRTEngineManager>::Global() .DeleteKey(engine_name); } } } #endif delete prog; }); // The config and argument take a lot of storage, // when the predictor settings are complete, we release these stores. config_.PartiallyRelease(); #if defined(PADDLE_WITH_TESTING) fusion_statis_ = *argument_->fusion_statis_ptr(); #endif #if defined(_WIN32) argument_->PartiallyRelease(); #else if (config_.mkldnn_enabled() || (config_.tensorrt_engine_enabled() && config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8)) { argument_->PartiallyRelease(); } else { argument_.reset(nullptr); } #endif LOG(INFO) << "======= optimize end ======="; } template <> std::unique_ptr CreatePaddlePredictor( const AnalysisConfig &config) { PADDLE_ENFORCE_EQ( config.is_valid(), true, platform::errors::InvalidArgument( "Note: Each config can only be used for one predictor.")); // Register custom operators compiled by the user. // This function can only be executed once per process. static std::once_flag custom_operators_registered; std::call_once(custom_operators_registered, []() { inference::RegisterAllCustomOperator(); }); auto SetGflags = [](const AnalysisConfig &config) { auto SetGflag = [](const char *name, const char *value) { std::string ret = ::GFLAGS_NAMESPACE::SetCommandLineOption(name, value); PADDLE_ENFORCE_EQ( ret.empty(), false, platform::errors::InvalidArgument( "Fail to set gflag: %s, please make sure the gflag exists.", name)); VLOG(3) << "set gflag: --" << name << "=" << value; }; // TODO(NHZlX): Should add the link to the doc of // paddle_infer::CreatePredictor if (config.glog_info_disabled()) { FLAGS_logtostderr = 1; FLAGS_minloglevel = 2; // GLOG_ERROR } if (config.use_gpu()) { static std::once_flag gflags_initialized; static bool process_level_allocator_enabled; std::call_once(gflags_initialized, [&]() { PADDLE_ENFORCE_GE( config.memory_pool_init_size_mb(), 0.f, platform::errors::InvalidArgument( "The size of memory pool should be greater than 0.")); PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, platform::errors::InvalidArgument( "Invalid device id (%d). The device id should be " "greater than 0.", config.gpu_device_id())); float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool(); if (fraction_of_gpu_memory > 0.95f) { LOG(ERROR) << "Allocate too much memory for the GPU memory pool, assigned " << config.memory_pool_init_size_mb() << " MB"; LOG(ERROR) << "Try to shink the value by setting " "AnalysisConfig::EnableUseGpu(...)"; } if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) { std::string value = std::to_string(fraction_of_gpu_memory); SetGflag("fraction_of_gpu_memory_to_use", value.data()); } // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local // allocator when multi-stream is enabled. if (config.thread_local_stream_enabled()) { SetGflag("allocator_strategy", "thread_local"); process_level_allocator_enabled = false; } else { process_level_allocator_enabled = true; } // for inference, the following default values are better. if (std::getenv("FLAGS_conv_workspace_size_limit") == nullptr) { SetGflag("conv_workspace_size_limit", "32"); } if (std::getenv("FLAGS_initial_cpu_memory_in_mb") == nullptr) { SetGflag("initial_cpu_memory_in_mb", "0"); } // support set gflags from environment. std::vector gflags; const phi::ExportedFlagInfoMap &env_map = phi::GetExportedFlagInfoMap(); std::ostringstream os; for (auto &pair : env_map) { os << pair.second.name << ","; } std::string tryfromenv_str = os.str(); if (!tryfromenv_str.empty()) { tryfromenv_str.pop_back(); tryfromenv_str = "--tryfromenv=" + tryfromenv_str; gflags.push_back(tryfromenv_str); } if (framework::InitGflags(gflags)) { VLOG(3) << "The following gpu analysis configurations only take effect " "for the first predictor: "; for (const auto &gflag : gflags) { VLOG(3) << gflag; } } else { LOG(WARNING) << "The one-time configuration of analysis predictor " "failed, which may be due to native predictor called " "first and its configurations taken effect."; } }); if (config.thread_local_stream_enabled() && process_level_allocator_enabled) { PADDLE_THROW(platform::errors::Fatal( "When binding threads and streams, the use of " "process-level allocators will result in undefined result " "errors due to memory asynchronous operations." "The thread and stream binding configuration of all " "predictors should be the same in a single process.")); } } }; SetGflags(config); VLOG(3) << "create AnalysisPredictor"; std::unique_ptr predictor(new AnalysisPredictor(config)); // Each config can only be used for one predictor. config.SetInValid(); auto predictor_p = dynamic_cast(predictor.get()); #ifdef PADDLE_WITH_TENSORRT paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter(); #endif if (!predictor_p->Init(nullptr)) { return nullptr; } if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) { return nullptr; } return predictor; } bool AnalysisPredictor::MkldnnQuantize() { #if PADDLE_WITH_MKLDNN if (!mkldnn_quantizer_) mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer( *this, config_.mkldnn_quantizer_config()); return mkldnn_quantizer_->Quantize(); #else LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer"; return false; #endif } void AnalysisPredictor::PrepareFeedFetch() { PADDLE_ENFORCE_NOT_NULL(sub_scope_, platform::errors::InvalidArgument( "The sub_scope should not be nullptr.")); CreateFeedFetchVar(sub_scope_); for (auto *op : inference_program_->Block(0).AllOps()) { if (op->Type() == "feed") { int idx = PADDLE_GET_CONST(int, op->GetAttr("col")); if (feeds_.size() <= static_cast(idx)) { feeds_.resize(idx + 1); } feeds_[idx] = op; feed_names_[op->Output("Out")[0]] = idx; idx2feeds_[idx] = op->Output("Out")[0]; } else if (op->Type() == "fetch") { int idx = PADDLE_GET_CONST(int, op->GetAttr("col")); if (fetches_.size() <= static_cast(idx)) { fetches_.resize(idx + 1); } fetches_[idx] = op; idx2fetches_[idx] = op->Input("X")[0]; } } } void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) { PADDLE_ENFORCE_NOT_NULL( scope, platform::errors::InvalidArgument("The scope should not be nullptr.")); auto *var = scope->Var("feed"); var->GetMutable(); var = scope->Var("fetch"); var->GetMutable(); } std::vector AnalysisPredictor::GetInputNames() { std::vector input_names; for (auto &item : idx2feeds_) { input_names.push_back(item.second); } return input_names; } std::map> AnalysisPredictor::GetInputTensorShape() { std::map> input_shapes; std::vector names = GetInputNames(); for (std::string name : names) { auto *var = inference_program_->Block(0).FindVar(name); PADDLE_ENFORCE_NOT_NULL( var, platform::errors::PreconditionNotMet("Input %s does not exist.", name)); input_shapes[name] = var->GetShape(); } return input_shapes; } std::map AnalysisPredictor::GetInputTypes() { std::map input_type; std::vector names = GetInputNames(); for (const auto &name : names) { auto *var = inference_program_->Block(0).FindVar(name); PADDLE_ENFORCE_NOT_NULL( var, platform::errors::PreconditionNotMet( "Input %s does not exist inference_program_.", name)); auto dtype = var->GetDataType(); if (dtype == paddle::framework::proto::VarType::FP32) { input_type[name] = paddle_infer::DataType::FLOAT32; } else if (dtype == paddle::framework::proto::VarType::FP16) { input_type[name] = paddle_infer::DataType::FLOAT16; } else if (dtype == paddle::framework::proto::VarType::INT64) { input_type[name] = paddle_infer::DataType::INT64; } else if (dtype == paddle::framework::proto::VarType::INT32) { input_type[name] = paddle_infer::DataType::INT32; } else if (dtype == paddle::framework::proto::VarType::UINT8) { input_type[name] = paddle_infer::DataType::UINT8; } else if (dtype == paddle::framework::proto::VarType::INT8) { input_type[name] = paddle_infer::DataType::INT8; } else { PADDLE_THROW(paddle::platform::errors::Unimplemented( "Unsupported data type `%s` when get input dtype ", dtype)); } } return input_type; } std::vector AnalysisPredictor::GetOutputNames() { std::vector output_names; for (auto &item : idx2fetches_) { output_names.push_back(item.second); } return output_names; } std::map> AnalysisPredictor::GetOutputTensorShape() { std::map> output_shapes; std::vector names = GetOutputNames(); for (std::string name : names) { auto *var = inference_program_->Block(0).FindVar(name); PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet( "Output %s does not exist.", name)); output_shapes[name] = var->GetShape(); } return output_shapes; } std::map AnalysisPredictor::GetOutputTypes() { std::map output_type; std::vector names = GetOutputNames(); for (const auto &name : names) { auto *var = inference_program_->Block(0).FindVar(name); PADDLE_ENFORCE_NOT_NULL( var, platform::errors::PreconditionNotMet( "Output %s does not exist inference_program_.", name)); auto dtype = var->GetDataType(); if (dtype == paddle::framework::proto::VarType::FP32) { output_type[name] = paddle_infer::DataType::FLOAT32; } else if (dtype == paddle::framework::proto::VarType::FP16) { output_type[name] = paddle_infer::DataType::FLOAT16; } else if (dtype == paddle::framework::proto::VarType::INT64) { output_type[name] = paddle_infer::DataType::INT64; } else if (dtype == paddle::framework::proto::VarType::INT32) { output_type[name] = paddle_infer::DataType::INT32; } else if (dtype == paddle::framework::proto::VarType::UINT8) { output_type[name] = paddle_infer::DataType::UINT8; } else if (dtype == paddle::framework::proto::VarType::INT8) { output_type[name] = paddle_infer::DataType::INT8; } else { PADDLE_THROW(paddle::platform::errors::Unimplemented( "Unsupported data type `%s` when get output dtype ", dtype)); } } return output_type; } std::unique_ptr AnalysisPredictor::GetInputTensor( const std::string &name) { framework::Scope *scope; #if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) if (config_.dist_config().use_dist_model()) { scope = scope_.get(); } else { scope = executor_->GetScope(); } #else scope = executor_->GetScope(); #endif PADDLE_ENFORCE_NOT_NULL( scope->FindVar(name), platform::errors::PreconditionNotMet( "The variable named %s is not found in the scope of the executor.", name)); std::unique_ptr res(new ZeroCopyTensor( static_cast(scope), this->GetDeviceContexts())); res->input_or_output_ = true; res->SetName(name); if (platform::is_cpu_place(place_)) { res->SetPlace(PaddlePlace::kCPU); } else if (platform::is_ipu_place(place_)) { // Currently, IPUPlace's tensor copy between cpu and ipu has been set in // IpuBackend. res->SetPlace(PaddlePlace::kCPU); } else if (platform::is_xpu_place(place_)) { if (config_.lite_engine_enabled()) { // Currently, Paddle-Lite's XPU user interface only supports the transfer // of host data pointers. If it is currently used as a subgraph, execution // efficiency will be sacrificed, so it is temporarily set to cpu place. // And, the current lite engine of xpu must execute all parts of the // model. res->SetPlace(PaddlePlace::kCPU); } else { auto xpu_place = place_; res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId()); } } else if (platform::is_npu_place(place_)) { auto npu_place = place_; res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId()); } else if (platform::is_custom_place(place_)) { auto custom_place = place_; auto paddleplace = static_cast( static_cast(PaddlePlace::kCUSTOM) + phi::CustomRegisteredDeviceMap::Instance() .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType())); res->SetPlace(paddleplace, custom_place.GetDeviceId()); } else { auto gpu_place = place_; res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId()); } return res; } std::unique_ptr AnalysisPredictor::GetOutputTensor( const std::string &name) { framework::Scope *scope; #if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) if (config_.dist_config().use_dist_model()) { scope = scope_.get(); } else { scope = executor_->GetScope(); } #else scope = executor_->GetScope(); #endif PADDLE_ENFORCE_NOT_NULL( scope->FindVar(name), platform::errors::PreconditionNotMet( "The variable named %s is not found in the scope of the executor.", name)); std::unique_ptr res(new ZeroCopyTensor( static_cast(scope), this->GetDeviceContexts())); res->input_or_output_ = false; res->SetName(name); if (platform::is_cpu_place(place_)) { res->SetPlace(PaddlePlace::kCPU); } else if (platform::is_ipu_place(place_)) { // Currently, IPUPlace's tensor copy between cpu and ipu has been set in // IpuBackend. res->SetPlace(PaddlePlace::kCPU); } else if (platform::is_xpu_place(place_)) { if (config_.lite_engine_enabled()) { // Currently, Paddle-Lite's XPU user interface only supports the transfer // of host data pointers. If it is currently used as a subgraph, execution // efficiency will be sacrificed, so it is temporarily set to cpu place. // And, the current lite engine of xpu must execute all parts of the // model. res->SetPlace(PaddlePlace::kCPU); } else { auto xpu_place = place_; res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId()); } } else if (platform::is_npu_place(place_)) { auto npu_place = place_; res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId()); } else if (platform::is_custom_place(place_)) { auto custom_place = place_; auto paddleplace = static_cast( static_cast(PaddlePlace::kCUSTOM) + phi::CustomRegisteredDeviceMap::Instance() .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType())); res->SetPlace(paddleplace, custom_place.GetDeviceId()); } else { auto gpu_place = place_; res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId()); } return res; } bool AnalysisPredictor::ZeroCopyRun() { inference::DisplayMemoryInfo(place_, "before run"); #if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) if (config_.dist_config().use_dist_model()) { VLOG(3) << "ZeroCopyRun will use the fleet executor."; inference::Timer timer; timer.tic(); fleet_exe_->Run(config_.dist_config().carrier_id()); VLOG(3) << "Fleet executor inf runs once use: " << std::to_string(timer.toc()) << "ms"; return true; } #endif if (private_context_) { paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_); } paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads()); #ifdef PADDLE_WITH_MKLDNN if (config_.use_mkldnn_) { std::vector> shape_vector; auto names = GetInputNames(); for (size_t i = 0; i < names.size(); ++i) { auto in_tensor = GetInputTensor(names[i]); shape_vector.emplace_back(in_tensor->shape()); } MkldnnPreSet(shape_vector); } #endif #ifdef PADDLE_WITH_TENSORRT if (config_.tensorrt_engine_enabled()) { inference::tensorrt::TensorRTEngine::predictor_id_per_thread = predictor_id_; VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: " << inference::tensorrt::TensorRTEngine::predictor_id_per_thread; } #endif executor_->Run(); inference::DisplayMemoryInfo(place_, "after run"); if (config_.shape_range_info_collected()) { CollectShapeRangeInfo(); } // Fix TensorArray reuse not cleaned bug. tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_); tensor_array_batch_cleaner_.ResetTensorArray(); // recover the cpu_math_library_num_threads to 1, in order to avoid thread // conflict when integrating it into deployment service. paddle::platform::SetNumThreads(1); if (private_context_) { paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr); } #ifdef PADDLE_WITH_MKLDNN if (config_.use_mkldnn_) MkldnnPostReset(); #endif #if defined(PADDLE_WITH_MKLML) // Frees unused memory allocated by the Intel® MKL Memory Allocator to // avoid memory leak. See: // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers platform::dynload::MKL_Free_Buffers(); #endif return true; } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) { if (!private_context_) { PADDLE_THROW(platform::errors::Fatal( "Please use config.SetExecStream to init gpu resources, and then we " "will bind gpu resources to execution stream.")); } if (stream != predictor_stream_) { #ifdef PADDLE_WITH_HIP hipStreamSynchronize(static_cast(predictor_stream_)); #else cudaStreamSynchronize(static_cast(predictor_stream_)); #endif ResourceManager::Instance().GpuResourceReBindStream(predictor_stream_, stream); predictor_stream_ = stream; auto *dev_ctxs = reinterpret_cast>> *>( this->GetDeviceContexts()); auto *dev_ctx = static_cast(dev_ctxs->at(place_).get().get()); dev_ctx->SetStream(stream); } return ZeroCopyRun(); } #endif void AnalysisPredictor::CollectShapeRangeInfo() { // if use gpu, sync first. if (config_.use_gpu()) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) paddle::platform::DeviceContextPool &pool = paddle::platform::DeviceContextPool::Instance(); auto gpu_place = place_; auto *dev_ctx = static_cast(pool.Get(gpu_place)); #ifdef PADDLE_WITH_HIP hipStreamSynchronize(dev_ctx->stream()); #else cudaStreamSynchronize(dev_ctx->stream()); #endif #endif } std::vector var_names = sub_scope_->LocalVarNames(); for (const auto &name : var_names) { auto *var = sub_scope_->GetVar(name); if (!var->IsType()) { continue; } auto tensor = var->Get(); framework::DDim dim = tensor.dims(); std::vector shape(dim.size()); for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i]; shape_info_[name].emplace_back(shape); // We need collect value range for shape tensor for Paddle-TRT's use. // To be noticed, this method to identify all shape tensors is based on // assumption that all shape tensors in the model have numbers <= 7. // This is a simple method to identify all shape tensors with some // mistakes, but it doesn't matter. auto is_shape_tensor = tensor.numel() <= 7 && tensor.numel() >= 1; if (tensor.dtype() == paddle::experimental::DataType::INT32 && is_shape_tensor) { std::vector int32_host(tensor.numel()); if (tensor.place() == platform::CPUPlace()) { paddle::memory::Copy(platform::CPUPlace(), int32_host.data(), platform::CPUPlace(), tensor.data(), tensor.numel() * sizeof(int)); } else if (tensor.place() == platform::CUDAPlace()) { #if defined(PADDLE_WITH_CUDA) paddle::memory::Copy(platform::CPUPlace(), int32_host.data(), platform::CUDAPlace(), tensor.data(), tensor.numel() * sizeof(int), nullptr); #endif } shape_tensor_value_[name].emplace_back(int32_host); } } } void AnalysisPredictor::StatisticShapeRangeInfo() { std::map> min_shapes; std::map> max_shapes; std::map> opt_shapes; std::map> min_values; std::map> max_values; std::map> opt_values; auto extract_min_max_opt = [](std::map> &min_data, decltype(min_data) max_data, decltype(min_data) opt_data, decltype(shape_info_) shape_data) { for (auto it : shape_data) { auto name = it.first; auto shapes = it.second; std::vector min_shape(shapes[0].begin(), shapes[0].end()); std::vector max_shape(shapes[0].begin(), shapes[0].end()); std::vector opt_shape(shapes[0].begin(), shapes[0].end()); auto ShapeMaxFreq = [](const std::map &m) -> int32_t { std::vector> counter; for (auto &it : m) counter.push_back(it); std::sort(counter.begin(), counter.end(), [](std::pair &a, std::pair &b) { return a.second > b.second; }); return counter[0].first; }; for (size_t d = 0; d < shapes[0].size(); ++d) { std::map counter; for (size_t i = 0; i < shapes.size(); ++i) { counter[shapes[i][d]] += 1; if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d]; if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d]; } opt_shape[d] = ShapeMaxFreq(counter); } min_data[name] = min_shape; max_data[name] = max_shape; opt_data[name] = opt_shape; } }; extract_min_max_opt(min_shapes, max_shapes, opt_shapes, shape_info_); extract_min_max_opt(min_values, max_values, opt_values, shape_tensor_value_); inference::SerializeShapeRangeInfo(config_.shape_range_info_path(), min_shapes, max_shapes, opt_shapes, min_values, max_values, opt_values); } bool AnalysisPredictor::LoadProgramDesc() { // Initialize the inference program std::string filename; if (!config_.model_dir().empty()) { filename = config_.model_dir() + "/__model__"; } else if (!config_.prog_file().empty()) { // All parameters are saved in a single file. // The file names should be consistent with that used // in Python API `fluid.io.save_inference_model`. filename = config_.prog_file(); } else { if (config_.model_dir().empty() && config_.prog_file().empty()) { LOG(ERROR) << "Either model_dir or (prog_file, param_file) should be set."; return false; } LOG(ERROR) << string::Sprintf( "not valid model path '%s' or program path '%s'.", config_.model_dir(), config_.params_file()); return false; } // Create ProgramDesc framework::proto::ProgramDesc proto; if (!config_.model_from_memory()) { std::string pb_content; // Read binary std::ifstream fin(filename, std::ios::in | std::ios::binary); PADDLE_ENFORCE_EQ( static_cast(fin.is_open()), true, platform::errors::NotFound( "Cannot open file %s, please confirm whether the file is normal.", filename)); fin.seekg(0, std::ios::end); pb_content.resize(fin.tellg()); fin.seekg(0, std::ios::beg); fin.read(&(pb_content.at(0)), pb_content.size()); fin.close(); proto.ParseFromString(pb_content); } else { proto.ParseFromString(config_.prog_file()); } inference_program_.reset(new framework::ProgramDesc(proto)); return true; } bool AnalysisPredictor::LoadParameters() { PADDLE_ENFORCE_NOT_NULL(inference_program_.get(), platform::errors::PreconditionNotMet( "The inference program should be loaded first.")); const auto &global_block = inference_program_->MutableBlock(0); // create a temporary program to load parameters. std::unique_ptr load_program( new framework::ProgramDesc()); framework::BlockDesc *load_block = load_program->MutableBlock(0); std::vector params; for (auto *var : global_block->AllVars()) { if (IsPersistable(var)) { VLOG(3) << "persistable variable's name: " << var->Name(); framework::VarDesc *new_var = load_block->Var(var->Name()); new_var->SetShape(var->GetShape()); new_var->SetDataType(var->GetDataType()); new_var->SetType(var->GetType()); new_var->SetLoDLevel(var->GetLoDLevel()); new_var->SetPersistable(true); if (!config_.params_file().empty()) { params.push_back(new_var->Name()); } else { // append_op framework::OpDesc *op = load_block->AppendOp(); op->SetType("load"); op->SetOutput("Out", {new_var->Name()}); op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()}); op->CheckAttrs(); } } } if (!config_.params_file().empty()) { // sort paramlist to have consistent ordering std::sort(params.begin(), params.end()); // append just the load_combine op framework::OpDesc *op = load_block->AppendOp(); op->SetType("load_combine"); op->SetOutput("Out", params); op->SetAttr("file_path", {config_.params_file()}); op->CheckAttrs(); } // Use NaiveExecutor to Load parameters. framework::NaiveExecutor e(place_); e.Prepare(scope_.get(), *load_program, 0, false); e.Run(); VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load"; return true; } uint64_t AnalysisPredictor::TryShrinkMemory() { ClearIntermediateTensor(); return paddle::memory::Release(place_); } void AnalysisPredictor::ClearIntermediateTensor() { PADDLE_ENFORCE_NOT_NULL(inference_program_.get(), platform::errors::PreconditionNotMet( "The inference program should be loaded first.")); const auto &global_block = inference_program_->MutableBlock(0); for (auto *var : global_block->AllVars()) { if (!IsPersistable(var)) { const std::string name = var->Name(); auto *variable = executor_->GetScope()->FindVar(name); if (variable != nullptr && variable->IsType() && name != "feed" && name != "fetch") { VLOG(3) << "Clear Intermediate Tensor: " << name; auto *t = variable->GetMutable(); t->clear(); } } } } #ifdef PADDLE_WITH_TENSORRT bool AnalysisPredictor::SaveTrtCalibToDisk() { PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(), true, platform::errors::PreconditionNotMet( "This func can be invoked only in trt mode")); auto &block = inference_program_->Block(0); for (auto &op_desc : block.AllOps()) { if (op_desc->Type() == "tensorrt_engine") { std::string engine_name = PADDLE_GET_CONST( std::string, op_desc->GetAttr("calibration_engine_key")); if (!Singleton::Global().Has(engine_name)) { LOG(ERROR) << "You should run the predictor(with trt) on the real data " "to generate calibration info"; return false; } TRTCalibratorEngine *calib_engine = Singleton::Global().Get(engine_name); LOG(INFO) << "Wait for calib threads done."; calib_engine->calib_->waitAndSetDone(); LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot " "of time..."; calib_engine->thr_->join(); std::string calibration_table_data = calib_engine->calib_->getCalibrationTableAsString(); if (calibration_table_data.empty()) { LOG(ERROR) << "the calibration table is empty."; return false; } std::string model_opt_cache_dir = argument_->Has("model_dir") ? argument_->model_dir() : inference::analysis::GetDirRoot( argument_->model_program_path()); std::string calibration_table_data_path = inference::analysis::GetTrtCalibPath( inference::analysis::GetOrCreateModelOptCacheDir( model_opt_cache_dir), engine_name); std::ofstream ofile(calibration_table_data_path, std::ios::out); LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file " << calibration_table_data_path; ofile << calibration_table_data; ofile.close(); } } // Free all calibrator resources. Singleton::Global().DeleteALL(); return true; } #endif AnalysisPredictor::~AnalysisPredictor() { #ifdef PADDLE_WITH_TENSORRT if (config_.tensorrt_engine_enabled() && config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 && Singleton::Global().Has()) { SaveTrtCalibToDisk(); } #endif if (config_.with_profile_) { platform::DisableProfiler(platform::EventSortingKey::kTotal, "./profile.log"); } if (sub_scope_) { if (framework::global_transfer_scope_key().find(sub_scope_) != framework::global_transfer_scope_key().end()) { auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_]; for (auto iter = scope_key_set.begin(); iter != scope_key_set.end(); iter++) { framework::global_transfer_data_cache().erase(*iter); } framework::global_transfer_scope_key().erase(sub_scope_); } scope_->DeleteScope(sub_scope_); } #if PADDLE_WITH_MKLDNN if (mkldnn_quantizer_) { delete mkldnn_quantizer_; mkldnn_quantizer_ = nullptr; } #endif if (config_.shape_range_info_collected()) { StatisticShapeRangeInfo(); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (predictor_stream_ != nullptr) { ResourceManager::Instance().DestroyGPUResource(predictor_stream_); } #endif if (place_.GetType() != phi::AllocationType::UNDEFINED) { memory::Release(place_); } device_contexts_.clear(); #ifdef PADDLE_WITH_TENSORRT if (config_.trt_engine_memory_sharing()) { inference::Singleton::Global() .releaseContextMemory(predictor_id_); } #endif } std::unique_ptr AnalysisPredictor::Clone(void *stream) { VLOG(3) << "AnalysisPredictor::Clone"; std::lock_guard lk(clone_mutex_); auto *x = new AnalysisPredictor(config_); x->status_is_cloned_ = true; x->root_predictor_id_ = this->root_predictor_id_; x->config_.apply_optim_ = false; if (config_.use_external_stream_ && stream == nullptr) { PADDLE_THROW(platform::errors::InvalidArgument( "config has been configured to use external stream, but the Clone " "function has not received a valid stream parameter.")); } else if (!config_.use_external_stream_ && stream != nullptr) { PADDLE_THROW(platform::errors::InvalidArgument( "config has not been configured to use external stream, but the Clone " "function has received a stream parameter.")); } x->predictor_stream_ = stream; x->Init(scope_, inference_program_); #ifdef PADDLE_WITH_TENSORRT x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_); #endif return std::unique_ptr(x); } std::string AnalysisPredictor::GetSerializedProgram() const { return inference_program_->Proto()->SerializeAsString(); } // Add SaveOptimModel void AnalysisPredictor::SaveOptimModel(const std::string &dir) { // save model std::string model_name = dir + "/model"; std::ofstream outfile; outfile.open(model_name, std::ios::out | std::ios::binary); std::string inference_prog_desc = GetSerializedProgram(); outfile << inference_prog_desc; // save params framework::ProgramDesc save_program; auto *save_block = save_program.MutableBlock(0); const framework::ProgramDesc &main_program = program(); const framework::BlockDesc &global_block = main_program.Block(0); std::vector save_var_list; for (framework::VarDesc *var : global_block.AllVars()) { if (IsPersistable(var)) { framework::VarDesc *new_var = save_block->Var(var->Name()); new_var->SetShape(var->GetShape()); new_var->SetDataType(var->GetDataType()); new_var->SetType(var->GetType()); new_var->SetLoDLevel(var->GetLoDLevel()); new_var->SetPersistable(true); save_var_list.push_back(new_var->Name()); } } std::sort(save_var_list.begin(), save_var_list.end()); auto *op = save_block->AppendOp(); op->SetType("save_combine"); op->SetInput("X", save_var_list); op->SetAttr("file_path", dir + "/params"); op->CheckAttrs(); platform::CPUPlace place; framework::Executor exe(place); exe.Run(save_program, scope(), 0, true, true); } void AnalysisPredictor::RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) { static std::once_flag register_hook_flag; std::call_once(register_hook_flag, [this] { executor_->RegisterOutputHook([this](framework::OperatorBase *op) { for (auto &output : op->Outputs()) { for (auto &var_name : output.second) { auto *var = this->sub_scope_->FindVar(var_name); if (!var || !var->IsType()) continue; auto dense_tensor = var->Get(); if (!dense_tensor.initialized()) continue; auto tensor = this->GetOutputTensor(var_name); for (auto &hookfunc : this->hookfuncs_) { hookfunc(op->Type(), var_name, *tensor); } } } }); }); hookfuncs_.push_back(hookfunc); } template <> std::unique_ptr CreatePaddlePredictor( const AnalysisConfig &config) { LOG(WARNING) << "Deprecated. Please use CreatePredictor instead."; return CreatePaddlePredictor( config); } } // namespace paddle #ifdef PADDLE_WITH_TENSORRT USE_TRT_CONVERTER(elementwise_add_weight); USE_TRT_CONVERTER(elementwise_sub_weight); USE_TRT_CONVERTER(elementwise_mul_weight); USE_TRT_CONVERTER(elementwise_div_weight); USE_TRT_CONVERTER(elementwise_min_weight); USE_TRT_CONVERTER(elementwise_max_weight); USE_TRT_CONVERTER(elementwise_pow_weight); USE_TRT_CONVERTER(elementwise_floordiv_weight); USE_TRT_CONVERTER(elementwise_add_tensor); USE_TRT_CONVERTER(elementwise_sub_tensor); USE_TRT_CONVERTER(elementwise_div_tensor); USE_TRT_CONVERTER(elementwise_mul_tensor); USE_TRT_CONVERTER(elementwise_max_tensor); USE_TRT_CONVERTER(elementwise_min_tensor); USE_TRT_CONVERTER(elementwise_pow_tensor); USE_TRT_CONVERTER(elementwise_floordiv_tensor); USE_TRT_CONVERTER(less_than); USE_TRT_CONVERTER(greater_than); USE_TRT_CONVERTER(logical_or); USE_TRT_CONVERTER(logical_xor); USE_TRT_CONVERTER(logical_and); USE_TRT_CONVERTER(less_equal); USE_TRT_CONVERTER(transpose); USE_TRT_CONVERTER(transpose2); USE_TRT_CONVERTER(flatten); USE_TRT_CONVERTER(flatten_contiguous_range); USE_TRT_CONVERTER(matmul); USE_TRT_CONVERTER(matmul_v2); USE_TRT_CONVERTER(bmm); USE_TRT_CONVERTER(conv2d); USE_TRT_CONVERTER(relu); USE_TRT_CONVERTER(sigmoid); USE_TRT_CONVERTER(fc); USE_TRT_CONVERTER(pool2d); USE_TRT_CONVERTER(softmax); USE_TRT_CONVERTER(batch_norm); USE_TRT_CONVERTER(concat); USE_TRT_CONVERTER(dropout); USE_TRT_CONVERTER(pad); USE_TRT_CONVERTER(hard_sigmoid); USE_TRT_CONVERTER(hard_swish); USE_TRT_CONVERTER(split); USE_TRT_CONVERTER(fill_any_like); USE_TRT_CONVERTER(prelu); USE_TRT_CONVERTER(conv2d_transpose); USE_TRT_CONVERTER(leaky_relu); USE_TRT_CONVERTER(shuffle_channel); USE_TRT_CONVERTER(where); USE_TRT_CONVERTER(one_hot); USE_TRT_CONVERTER(one_hot_v2); USE_TRT_CONVERTER(swish); USE_TRT_CONVERTER(silu); USE_TRT_CONVERTER(group_norm); USE_TRT_CONVERTER(instance_norm); USE_TRT_CONVERTER(layer_norm); USE_TRT_CONVERTER(gelu); USE_TRT_CONVERTER(multihead_matmul); USE_TRT_CONVERTER(multihead_matmul_roformer); USE_TRT_CONVERTER(skip_layernorm); USE_TRT_CONVERTER(slice); USE_TRT_CONVERTER(scale); USE_TRT_CONVERTER(stack); USE_TRT_CONVERTER(clip); USE_TRT_CONVERTER(gather); USE_TRT_CONVERTER(anchor_generator); USE_TRT_CONVERTER(yolo_box); USE_TRT_CONVERTER(yolo_box_head); USE_TRT_CONVERTER(arg_max); USE_TRT_CONVERTER(arg_min); USE_TRT_CONVERTER(roi_align); USE_TRT_CONVERTER(affine_channel); USE_TRT_CONVERTER(multiclass_nms); USE_TRT_CONVERTER(multiclass_nms3); USE_TRT_CONVERTER(nearest_interp); USE_TRT_CONVERTER(nearest_interp_v2); USE_TRT_CONVERTER(bilinear_interp_v2); USE_TRT_CONVERTER(reshape); USE_TRT_CONVERTER(reshape2); USE_TRT_CONVERTER(gather_nd); USE_TRT_CONVERTER(reduce_mean); USE_TRT_CONVERTER(reduce_max); USE_TRT_CONVERTER(reduce_min); USE_TRT_CONVERTER(reduce_sum); USE_TRT_CONVERTER(reduce_prod); USE_TRT_CONVERTER(tile); USE_TRT_CONVERTER(conv3d); USE_TRT_CONVERTER(conv3d_transpose); USE_TRT_CONVERTER(mish); USE_TRT_CONVERTER(deformable_conv); USE_TRT_CONVERTER(pool3d) USE_TRT_CONVERTER(square); // unary op USE_TRT_CONVERTER(exp); USE_TRT_CONVERTER(log); USE_TRT_CONVERTER(sqrt); USE_TRT_CONVERTER(reciprocal); USE_TRT_CONVERTER(abs); USE_TRT_CONVERTER(sin); USE_TRT_CONVERTER(cos); USE_TRT_CONVERTER(tan); USE_TRT_CONVERTER(sinh); USE_TRT_CONVERTER(cosh); USE_TRT_CONVERTER(tanh); USE_TRT_CONVERTER(asin); USE_TRT_CONVERTER(acos); USE_TRT_CONVERTER(atan); USE_TRT_CONVERTER(asinh); USE_TRT_CONVERTER(acosh); USE_TRT_CONVERTER(atanh); USE_TRT_CONVERTER(ceil); USE_TRT_CONVERTER(floor); #if IS_TRT_VERSION_GE(8200) USE_TRT_CONVERTER(round); USE_TRT_CONVERTER(sign); #endif USE_TRT_CONVERTER(rsqrt); USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm) USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm); USE_TRT_CONVERTER(preln_skip_layernorm) USE_TRT_CONVERTER(fused_bias_dropout_residual_layer_norm) USE_TRT_CONVERTER(c_allreduce_sum) USE_TRT_CONVERTER(roll) USE_TRT_CONVERTER(strided_slice) USE_TRT_CONVERTER(rnn) USE_TRT_CONVERTER(fill_constant_batch_size_like) USE_TRT_CONVERTER(transformer_input_convert) USE_TRT_CONVERTER(cast) USE_TRT_CONVERTER(recover_padding) USE_TRT_CONVERTER(remove_padding) USE_TRT_CONVERTER(equal); USE_TRT_CONVERTER(not_equal); USE_TRT_CONVERTER(top_k) USE_TRT_CONVERTER(top_k_v2) USE_TRT_CONVERTER(range) USE_TRT_CONVERTER(squeeze2) USE_TRT_CONVERTER(unsqueeze2) USE_TRT_CONVERTER(sum) USE_TRT_CONVERTER(shape) USE_TRT_CONVERTER(fill_constant) USE_TRT_CONVERTER(fused_token_prune) USE_TRT_CONVERTER(celu) USE_TRT_CONVERTER(layernorm_shift_partition) USE_TRT_CONVERTER(reverse_roll) USE_TRT_CONVERTER(preln_layernorm_shift_partition) USE_TRT_CONVERTER(merge_layernorm) USE_TRT_CONVERTER(trans_layernorm) USE_TRT_CONVERTER(skip_merge_layernorm) USE_TRT_CONVERTER(generic_plugin_creater) USE_TRT_CONVERTER(custom_plugin_creater) USE_TRT_CONVERTER(tanh_shrink) USE_TRT_CONVERTER(logsigmoid) USE_TRT_CONVERTER(lookup_table) USE_TRT_CONVERTER(expand_v2) USE_TRT_CONVERTER(take_along_axis) USE_TRT_CONVERTER(skip_groupnorm_act) USE_TRT_CONVERTER(preln_groupnorm_act) #if IS_TRT_VERSION_GE(8522) USE_TRT_CONVERTER(flash_multihead_matmul) USE_TRT_CONVERTER(cross_multihead_matmul) #endif #if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000) USE_TRT_CONVERTER(sparse_fc) USE_TRT_CONVERTER(sparse_multihead_matmul) #endif #endif namespace paddle_infer { Predictor::Predictor(const Config &config) { const_cast(&config)->SwitchUseFeedFetchOps(false); // The second parameter indicates that the discard log is not printed if (config.use_onnxruntime()) { #ifdef PADDLE_WITH_ONNXRUNTIME if (config.use_gpu()) { LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU," "and it falls back to use Paddle Inference."; } else if (!paddle::CheckConvertToONNX(config)) { LOG(WARNING) << "Paddle2ONNX do't support convert the Model, fall back to using " "Paddle Inference."; } else { predictor_ = paddle::CreatePaddlePredictor( config); return; } #else LOG(WARNING) << "The onnxruntime backend isn't enabled," " and please re-compile Paddle with WITH_ONNXRUNTIME option," "fall back to using Paddle Inference."; #endif } predictor_ = paddle::CreatePaddlePredictor( config); } std::vector Predictor::GetInputNames() { return predictor_->GetInputNames(); } std::map> Predictor::GetInputTensorShape() { return predictor_->GetInputTensorShape(); } std::map Predictor::GetInputTypes() { return predictor_->GetInputTypes(); } std::unique_ptr Predictor::GetInputHandle(const std::string &name) { return predictor_->GetInputTensor(name); } std::vector Predictor::GetOutputNames() { return predictor_->GetOutputNames(); } std::unique_ptr Predictor::GetOutputHandle(const std::string &name) { return predictor_->GetOutputTensor(name); } std::map> Predictor::GetOutputTensorShape() { return predictor_->GetOutputTensorShape(); } std::map Predictor::GetOutputTypes() { return predictor_->GetOutputTypes(); } bool Predictor::Run() { return predictor_->ZeroCopyRun(); } std::unique_ptr Predictor::Clone(void *stream) { auto analysis_pred = predictor_->Clone(stream); std::unique_ptr pred(new Predictor(std::move(analysis_pred))); return pred; } void Predictor::ClearIntermediateTensor() { predictor_->ClearIntermediateTensor(); } uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); } void Predictor::RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) { predictor_->RegisterOutputHook(hookfunc); } void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); } int GetNumBytesOfDataType(DataType dtype) { switch (dtype) { case DataType::FLOAT32: return sizeof(float); case DataType::INT64: return sizeof(int64_t); case DataType::INT32: return sizeof(int32_t); case DataType::UINT8: return sizeof(uint8_t); default: assert(false); return -1; } } std::string GetVersion() { return paddle::get_version(); } std::tuple GetTrtCompileVersion() { #ifdef PADDLE_WITH_TENSORRT return paddle::inference::tensorrt::GetTrtCompileVersion(); #else return std::tuple{0, 0, 0}; #endif } std::tuple GetTrtRuntimeVersion() { #ifdef PADDLE_WITH_TENSORRT return paddle::inference::tensorrt::GetTrtRuntimeVersion(); #else return std::tuple{0, 0, 0}; #endif } std::string UpdateDllFlag(const char *name, const char *value) { return paddle::UpdateDllFlag(name, value); } void ConvertToMixedPrecision(const std::string &model_file, const std::string ¶ms_file, const std::string &mixed_model_file, const std::string &mixed_params_file, PrecisionType mixed_precision, paddle_infer::PlaceType backend, bool keep_io_types, std::unordered_set black_list) { auto phi_backend = paddle::ConvertBackend(backend); auto phi_precision = paddle::ConvertPrecision(mixed_precision); paddle::inference::analysis::ConvertToMixedPrecision(model_file, params_file, mixed_model_file, mixed_params_file, phi_precision, phi_backend, keep_io_types, black_list); } } // namespace paddle_infer namespace paddle_infer { std::shared_ptr CreatePredictor(const Config &config) { // NOLINT std::shared_ptr predictor(new Predictor(config)); return predictor; } namespace services { PredictorPool::PredictorPool(const Config &config, size_t size) { PADDLE_ENFORCE_GE( size, 1UL, paddle::platform::errors::InvalidArgument( "The predictor pool size should be greater than 1, but it's (%d)", size)); Config copy_config(config); main_pred_.reset(new Predictor(config)); for (size_t i = 0; i < size - 1; i++) { if (config.tensorrt_engine_enabled()) { Config config_tmp(copy_config); preds_.emplace_back(new Predictor(config_tmp)); } else { preds_.emplace_back(main_pred_->Clone()); } } } Predictor *PredictorPool::Retrive(size_t idx) { PADDLE_ENFORCE_LT( idx, preds_.size() + 1, paddle::platform::errors::InvalidArgument( "There are (%d) predictors in the pool, but the idx is (%d)", idx, preds_.size() + 1)); if (idx == 0) { return main_pred_.get(); } return preds_[idx - 1].get(); } } // namespace services namespace experimental { // Note: Can only be used under thread_local semantics. bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p, cudaStream_t stream) { #ifdef PADDLE_WITH_CUDA auto pred = dynamic_cast(p->predictor_.get()); return pred->ExpRunWithExternalStream(stream); #endif return false; } bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p, hipStream_t stream) { #ifdef PADDLE_WITH_HIP auto pred = dynamic_cast(p->predictor_.get()); return pred->ExpRunWithExternalStream(stream); #endif return false; } void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c, bool with_interleaved) { #ifdef PADDLE_WITH_CUDA c->trt_with_interleaved_ = with_interleaved; #endif } void InternalUtils::SetTransformerPosid( paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) { #ifdef PADDLE_WITH_CUDA c->tensorrt_transformer_posid_ = tensorrt_transformer_posid; #endif } void InternalUtils::SetTransformerMaskid( paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) { #ifdef PADDLE_WITH_CUDA c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid; #endif } void InternalUtils::SyncStream(paddle_infer::Predictor *p) { #ifdef PADDLE_WITH_CUDA auto *pred = dynamic_cast(p->predictor_.get()); paddle::platform::DeviceContextPool &pool = paddle::platform::DeviceContextPool::Instance(); auto *dev_ctx = reinterpret_cast(pool.Get(pred->place_)); cudaStreamSynchronize(dev_ctx->stream()); #endif } void InternalUtils::SyncStream(cudaStream_t stream) { #ifdef PADDLE_WITH_CUDA cudaStreamSynchronize(stream); #endif } } // namespace experimental } // namespace paddle_infer