# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...fluid import framework from ...fluid import core from ...fluid import unique_name from ...fluid.core import VarDesc from ...fluid.data_feeder import check_type from ...fluid.initializer import NumpyArrayInitializer class Assign(NumpyArrayInitializer): """Init an parameter with a numpy array, list, or tensor. Args: value (Tensor|numpy.ndarray|list|tuple): numpy array, list, tuple, or tensor to initialize the parameter. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: A parameter initialized by the input numpy array, list, or tensor. Examples: .. code-block:: python import paddle import numpy as np # numpy array data_1 = paddle.ones(shape=[1, 2], dtype='float32') weight_attr_1 = paddle.framework.ParamAttr( name="linear_weight_1", initializer=paddle.nn.initializer.Assign(np.array([2, 2]))) bias_attr_1 = paddle.framework.ParamAttr( name="linear_bias_1", initializer=paddle.nn.initializer.Assign(np.array([2]))) linear_1 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_1, bias_attr=bias_attr_1) # linear_1.weight: [2. 2.] # linear_1.bias: [2.] res_1 = linear_1(data_1) # res_1: [6.] # python list data_2 = paddle.ones(shape=[1, 2], dtype='float32') weight_attr_2 = paddle.framework.ParamAttr( name="linear_weight_2", initializer=paddle.nn.initializer.Assign([2, 2])) bias_attr_2 = paddle.framework.ParamAttr( name="linear_bias_2", initializer=paddle.nn.initializer.Assign([2])) linear_2 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_2, bias_attr=bias_attr_2) # linear_2.weight: [2. 2.] # linear_2.bias: [2.] res_2 = linear_2(data_2) # res_2: [6.] # tensor data_3 = paddle.ones(shape=[1, 2], dtype='float32') weight_attr_3 = paddle.framework.ParamAttr( name="linear_weight_3", initializer=paddle.nn.initializer.Assign(paddle.full([2], 2))) bias_attr_3 = paddle.framework.ParamAttr( name="linear_bias_3", initializer=paddle.nn.initializer.Assign(paddle.full([1], 2))) linear_3 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_3, bias_attr=bias_attr_3) # linear_3.weight: [2. 2.] # linear_3.bias: [2.] res_3 = linear_3(data_3) # res_3: [6.] """ def __init__(self, value, name=None): import numpy check_type(value, 'value', (numpy.ndarray, list, tuple, framework.Variable), 'Assign') if (isinstance(value, (list, tuple))): value = numpy.array(value) # TODO: value is already is a tensor, accounting efficiency maybe it does not need to convert tensor to numpy data and then initialized. if (isinstance(value, framework.Variable)): value = value.numpy() super(Assign, self).__init__(value)