// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/anakin/convert/fc.h" #include #include #include using anakin::graph::GraphGlobalMem; using anakin::AK_FLOAT; using anakin::saber::NV; using anakin::saber::Shape; namespace paddle { namespace inference { namespace anakin { void FcBaseOpConverter::operator()(const framework::proto::OpDesc &op, const framework::Scope &scope, bool test_mode) { framework::OpDesc op_desc(op, nullptr); auto input_names = op_desc.InputNames(); bool with_bias = input_names.size() == 3; std::string w_name = "Y"; std::string i_name = "X"; if (with_bias) { w_name = "W"; i_name = "Input"; } auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front(); // get weights auto *y_v = scope.FindVar(op_desc.Input(w_name).front()); PADDLE_ENFORCE_NOT_NULL(y_v); auto *y_t = y_v->GetMutable(); auto input_name = op_desc.Input(i_name).front(); auto output_name = op_desc.Output("Out").front(); engine_->AddOp(op_name, "Dense", {input_name}, {output_name}); engine_->AddOpAttr(op_name, "bias_term", with_bias); engine_->AddOpAttr(op_name, "axis", 1); auto weight_shape = framework::vectorize2int(y_t->dims()); int out_dim = weight_shape[1]; engine_->AddOpAttr(op_name, "out_dim", out_dim); const int w_m = weight_shape[0]; const int w_k = weight_shape[1]; weight_shape.push_back(1); weight_shape.push_back(1); Shape anakin_shape(weight_shape); framework::LoDTensor weight_tensor; weight_tensor.Resize(y_t->dims()); TensorCopySync((*y_t), platform::CPUPlace(), &weight_tensor); auto *weight_data = weight_tensor.data(); PADDLE_ENFORCE(w_m * w_k == weight_tensor.numel()); std::vector trans_weight_data(weight_tensor.numel()); for (int i = 0; i < w_m; i++) { for (int j = 0; j < w_k; j++) { trans_weight_data[i + j * w_m] = weight_data[i * w_k + j]; } } auto *weight1 = GraphGlobalMem::Global().template new_block(anakin_shape); float *cpu_data = static_cast(weight1->h_tensor().mutable_data()); std::copy_n(trans_weight_data.data(), weight_tensor.numel(), cpu_data); weight1->d_tensor().set_shape(anakin_shape); weight1->d_tensor().copy_from(weight1->h_tensor()); engine_->AddOpAttr(op_name, "weight_1", *weight1); // get bias if (with_bias) { auto *b_v = scope.FindVar(op_desc.Input("Bias").front()); PADDLE_ENFORCE_NOT_NULL(b_v); auto *b_t = b_v->GetMutable(); auto bias_shape = framework::vectorize2int(b_t->dims()); framework::LoDTensor bias_tensor; bias_tensor.Resize(b_t->dims()); TensorCopySync((*b_t), platform::CPUPlace(), &bias_tensor); auto *bias_data = bias_tensor.data(); bias_shape.insert(bias_shape.begin(), 1); bias_shape.insert(bias_shape.begin(), 1); bias_shape.insert(bias_shape.begin(), 1); // bias_shape.push_back(1); // bias_shape.push_back(1); Shape anakin_bias_shape(bias_shape); auto *weight2 = GraphGlobalMem::Global().template new_block( anakin_bias_shape); float *cpu_data2 = static_cast(weight2->h_tensor().mutable_data()); std::copy_n(bias_data, bias_tensor.numel(), cpu_data2); weight2->d_tensor().set_shape(anakin_bias_shape); weight2->d_tensor().copy_from(weight2->h_tensor()); engine_->AddOpAttr(op_name, "weight_2", *weight2); } } } // namespace anakin } // namespace inference } // namespace paddle REGISTER_ANAKIN_OP_CONVERTER(mul, MulOpConverter); REGISTER_ANAKIN_OP_CONVERTER(fc, FcOpConverter);