/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/sparse/batch_norm_grad_kernel.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/batch_norm_grad_kernel.h" #include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/sparse/empty_kernel.h" namespace phi { namespace sparse { template void BatchNormCooGradKernel(const Context& dev_ctx, const SparseCooTensor& x, const DenseTensor& scale, const DenseTensor& bias, const paddle::optional& mean, const paddle::optional& variance, const DenseTensor& saved_mean, const DenseTensor& saved_variance, const paddle::optional& reserve_space, const SparseCooTensor& y_grad, float momentum, float epsilon, const std::string& data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu, SparseCooTensor* x_grad, DenseTensor* scale_grad, DenseTensor* bias_grad) { EmptyLikeCooKernel(dev_ctx, x, x_grad); *scale_grad = phi::EmptyLike(dev_ctx, scale); *bias_grad = phi::EmptyLike(dev_ctx, bias); phi::BatchNormGradKernel(dev_ctx, x.values(), scale, bias, mean, variance, saved_mean, saved_variance, reserve_space, y_grad.values(), momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics, fuse_with_relu, x_grad->mutable_values(), scale_grad, bias_grad); } } // namespace sparse } // namespace phi PD_REGISTER_KERNEL(batch_norm_coo_grad, CPU, ALL_LAYOUT, phi::sparse::BatchNormCooGradKernel, float, double) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); } #if defined(PADDLE_WITH_HIP) PD_REGISTER_KERNEL(batch_norm_coo_grad, GPU, ALL_LAYOUT, phi::sparse::BatchNormCooGradKernel, float, phi::dtype::float16) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); } #endif #if defined(PADDLE_WITH_CUDA) PD_REGISTER_KERNEL(batch_norm_coo_grad, GPU, ALL_LAYOUT, phi::sparse::BatchNormCooGradKernel, float, double, phi::dtype::float16) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); if (kernel_key.dtype() == phi::DataType::FLOAT16) { kernel->OutputAt(0).SetDataType(phi::DataType::FLOAT32); // x_grad kernel->OutputAt(1).SetDataType(phi::DataType::FLOAT32); // scale_grad kernel->OutputAt(2).SetDataType(phi::DataType::FLOAT32); // bias_grad } } #endif