# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid.core as core import paddle.nn.functional as F from paddle.distributed.passes import PassManager, new_pass paddle.enable_static() class MultiHeadAttention(paddle.nn.Layer): def __init__( self, embed_dim, num_heads, add_residual=True, pre_ln=True, post_ln=False, attn_dropout=True, ): super(MultiHeadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = embed_dim self.vdim = embed_dim self.num_heads = num_heads self.add_residual = add_residual self.pre_ln = pre_ln self.post_ln = post_ln self.attn_dropout = attn_dropout self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.norm1 = paddle.nn.LayerNorm(embed_dim, epsilon=1e-5) self.norm2 = paddle.nn.LayerNorm(embed_dim, epsilon=1e-5) self.qkv_proj = paddle.nn.Linear(embed_dim, 3 * embed_dim) self.out_proj = paddle.nn.Linear(embed_dim, embed_dim) self.dropout = paddle.nn.Dropout(0.1, mode="upscale_in_train") def forward(self, x, attn_mask=None): residual = x if self.pre_ln: # pre layer norm x = self.norm1(x) # compute qkv qkv = self.qkv_proj(x) qkv = paddle.reshape(qkv, [0, 0, self.num_heads, 3 * self.head_dim]) qkv = paddle.transpose(qkv, [0, 2, 1, 3]) q, k, v = paddle.split(qkv, num_or_sections=3, axis=-1) # compute core attention product = paddle.matmul(x=q, y=k, transpose_y=True) product = paddle.scale(product, scale=self.head_dim**-0.5) if attn_mask is not None: product = product + attn_mask weights = F.softmax(product) if self.attn_dropout: weights = F.dropout( weights, 0.1, training=self.training, mode="upscale_in_train" ) out = paddle.matmul(weights, v) out = paddle.transpose(out, perm=[0, 2, 1, 3]) out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]]) # project to output out = self.out_proj(out) out = self.dropout(out) if self.add_residual: out = residual + out if self.post_ln: # post layer norm out = self.norm2(out) return out @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestFusedAttentionPass(unittest.TestCase): def setUp(self): self.add_residual = True self.pre_ln = True self.post_ln = True self.attn_dropout = True self.add_mask = True def test_pass(self): batch_size = 2 seq_len = 1024 hidden_size = 768 num_heads = 12 x_data = np.random.rand(batch_size, seq_len, hidden_size).astype( 'float32' ) mask_data = np.random.rand( batch_size, num_heads, seq_len, seq_len ).astype('float32') main_prog = paddle.static.Program() startup_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, startup_prog): data = paddle.static.data( name="x", shape=[-1, seq_len, hidden_size], dtype='float32', ) if self.add_mask: attn_mask = paddle.static.data( name="attn_mask", shape=[-1, num_heads, seq_len, seq_len], dtype='float32', ) else: attn_mask = None multi_head_attn = MultiHeadAttention( hidden_size, num_heads, add_residual=self.add_residual, pre_ln=self.pre_ln, post_ln=self.post_ln, attn_dropout=self.attn_dropout, ) out = multi_head_attn(data, attn_mask) loss = paddle.mean(out) sgd_optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(loss) pass_manager = PassManager([new_pass("fused_attention")]) pass_manager.apply([main_prog], [startup_prog]) ops = main_prog.global_block().ops assert ops[0].type == 'reduce_mean' if __name__ == "__main__": np.random.seed(0) unittest.main()