// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // Copyright (c) 2022 NVIDIA Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include "paddle/fluid/framework/ir/pass_builder.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace framework { namespace ir { class Graph; class PassBuilder; } // namespace ir } // namespace framework namespace platform { class NCCLCommunicator; } // namespace platform } // namespace paddle #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) #include "paddle/fluid/platform/device/gpu/nccl_helper.h" #elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL) #include "paddle/fluid/platform/device/xpu/bkcl_helper.h" #endif namespace paddle { namespace framework { namespace details { using DeviceType = paddle::platform::DeviceType; namespace p = paddle::platform; struct BuildStrategy { // ParallelExecutor supports two modes of ReduceStrategy, kAllReduce and // kReduce, for CPU and GPU. If you use kAllReduce, different threads // optimize their parameters separately. If you use kReduce, the optimizations // of parameters are distributed to different threads. // For example, a model has 100 parameters and is running with four threads, // if you choose kAllReduce, every thread is to optimize 100 parameters // separately, if you choose kReduce, every thread is to optimize 25 // parameters. // Of particular note is, if you use kReduce when using CPU training, // all the parameters are shared between different threads. This // feature will save memory. // FIXME(zcd): The result of the two modes(kAllReduce and kReduce) maybe not // equal for GPU. Because, the result of the different order of summing maybe // different, for example, the result of `a+b+c+d` may be different with the // result of `c+a+b+d`. // For GPU, the implementation of kAllReduce and kReduce is adopted NCCL, // so the result of kAllReduce and kReduce maybe not equal. // For CPU, if you want to fix the order of summing to make the result // of kAllReduce and kReduce no diff, you can add // `FLAGS_cpu_deterministic=true` to env. enum class ReduceStrategy { kAllReduce = 0, kReduce = 1, kNoReduce = 2 }; enum class GradientScaleStrategy { kCoeffNumDevice = 0, kOne = 1, // user can customize gradient scale to use, and just feed // it into exe.run(). kCustomized = 2, }; ReduceStrategy reduce_{ReduceStrategy::kAllReduce}; GradientScaleStrategy gradient_scale_{GradientScaleStrategy::kCoeffNumDevice}; std::string debug_graphviz_path_{""}; // Add dependency between backward ops and optimization ops, make sure that // all the backward ops are finished before running the optimization // ops. It might make the training speed of data parallelism faster. bool enable_backward_optimizer_op_deps_{true}; // TODO(dev-paddle): enable_sequential_execution depends on // kStaleProgramOpDescs, it is not appropriate, because kStaleProgramOpDescs // will be removed in the near future. bool enable_sequential_execution_{false}; bool remove_unnecessary_lock_{true}; // TODO(dev-paddle): cache_runtime_context may cause some models to hang up // while running. bool cache_runtime_context_{false}; // Fix the op run order. bool fix_op_run_order_{false}; // Lowering sub-graph into cinn ops. bool build_cinn_pass_{false}; // Operator fusion // TODO(dev-paddle): fuse_elewise_add_act_ops may cause some models have // cycle. bool fuse_bn_act_ops_{false}; bool fuse_bn_add_act_ops_{true}; bool fuse_elewise_add_act_ops_{false}; bool enable_auto_fusion_{false}; // Fuse_all_optimizer_ops and fuse_all_reduce_ops require that gradients // should not be sparse types paddle::optional fuse_all_optimizer_ops_{false}; paddle::optional fuse_all_reduce_ops_{paddle::none}; // fuse_relu_depthwise_conv can fuse the `relu -> // depthwise_conv` bool fuse_relu_depthwise_conv_{false}; // NOTE(zcd): In reduce mode, fusing broadcast ops may make the program // faster. Because fusing broadcast OP equals delaying the execution of all // broadcast Ops, in this case, all nccl streams are used only for reduce // operations for a period of time. paddle::optional fuse_broadcast_ops_{paddle::none}; // replace batch_norm with sync_batch_norm. bool sync_batch_norm_{false}; // Fuse GEMM+Epilogue via cublasLt epilogue. bool fuse_gemm_epilogue_{false}; // Fused multi head attention bool fused_attention_{false}; // mkldnn_enabled_op_types specify the operator type list to // use MKLDNN acceleration. It is null in default, means // that all the operators supported by MKLDNN will be // accelerated. And it should not be set when // FLAGS_use_mkldnn=false std::unordered_set mkldnn_enabled_op_types_; // By default, memory_optimize would be opened if gc is disabled, and // be closed if gc is enabled. // Users can forcely enable/disable memory_optimize by setting True/False. paddle::optional memory_optimize_{paddle::none}; // Turn on inplace by default. bool enable_inplace_{true}; // Turn off inplace addto by default. bool enable_addto_{false}; bool allow_cuda_graph_capture_{false}; // Inference pass bool enable_inference_pass_{false}; // switch for infernce pass bool delete_dropout_{true}; // delte dropout op #ifdef PADDLE_WITH_MKLDNN bool use_mkldnn_{true}; // use mkdnn to do inference #else bool use_mkldnn_{false}; // use mkdnn to do inference #endif // FIXME(zcd): is_distribution_ is a temporary field, because in pserver mode, // num_trainers is 1, so the current fields of build_strategy doesn't tell if // it's distributed model. bool is_distribution_{false}; bool async_mode_{false}; int num_trainers_{1}; int trainer_id_{0}; std::vector trainers_endpoints_; // NCCL config size_t nccl_comm_num_{1}; size_t bkcl_comm_num_{1}; // The picture is here: // https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396 bool use_hierarchical_allreduce_{false}; // Nccl ranks in a node when use hierarchical allreduce, it's set to gpu // cards' number in most cases. size_t hierarchical_allreduce_inter_nranks_{0}; // Nccl ranks bewteen nodes when use hierarchical allreduce, it's set to // nodes number. size_t hierarchical_allreduce_exter_nranks_{0}; // NOTE: // Before you add new options, think if it's a general strategy that works // with other strategy. If not, the strategy should be created through // CreatePassesFromStrategy and the pass can be managed separately. // User normally doesn't need to call this API. // The PassBuilder allows for more customized insert, remove of passes // from python side. // A new PassBuilder is created based on configs defined above and // passes are owned by the PassBuilder. std::shared_ptr CreatePassesFromStrategy( bool finalize_strategy) const; bool IsFinalized() const { return is_finalized_; } void ClearFinalized() { pass_builder_ = nullptr; is_finalized_ = false; } bool IsMultiDevPass(const std::string &pass_name) const; // Apply the passes built by the pass_builder_. The passes will be // applied to the Program and output an ir::Graph. ir::Graph *Apply(ir::Graph *graph, const std::vector &places, const std::string &loss_var_name, const std::vector &local_scopes, const size_t &nranks, #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) DeviceType use_device, platform::NCCLCommunicator *nccl_ctxs) const; #elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL) DeviceType use_device, platform::BKCLCommunicator *bkcl_ctxs) const; #else DeviceType use_device) const; #endif // If set true, ParallelExecutor would build the main_program into multiple // graphs, // each of the graphs would run with one device. This approach can achieve // better performance // on some scenarios. mutable bool enable_parallel_graph_ = false; private: mutable bool is_finalized_ = false; mutable std::shared_ptr pass_builder_; }; inline std::ostream &operator<<(std::ostream &os, const BuildStrategy &strategy) { os << "BuildStrategy: " << &strategy << std::endl; os << "reduce_: " << static_cast(strategy.reduce_) << std::endl; os << "gradient_scale_: " << static_cast(strategy.gradient_scale_) << std::endl; os << "debug_graphviz_path_: " << strategy.debug_graphviz_path_ << std::endl; os << "enable_backward_optimizer_op_deps_: " << strategy.enable_backward_optimizer_op_deps_ << std::endl; os << "enable_sequential_execution_: " << strategy.enable_sequential_execution_ << std::endl; os << "remove_unnecessary_lock_: " << strategy.remove_unnecessary_lock_ << std::endl; os << "cache_runtime_context_: " << strategy.cache_runtime_context_ << std::endl; os << "fix_op_run_order_: " << strategy.fix_op_run_order_ << std::endl; os << "fuse_bn_act_ops_: " << strategy.fuse_bn_act_ops_ << std::endl; os << "fuse_bn_add_act_ops_: " << strategy.fuse_bn_add_act_ops_ << std::endl; os << "fuse_elewise_add_act_ops_: " << strategy.fuse_elewise_add_act_ops_ << std::endl; os << "enable_auto_fusion_: " << strategy.enable_auto_fusion_ << std::endl; os << "fuse_all_optimizer_ops_: " << strategy.fuse_all_optimizer_ops_ << std::endl; os << "fuse_all_reduce_ops_: " << strategy.fuse_all_reduce_ops_ << std::endl; os << "fuse_relu_depthwise_conv_: " << strategy.fuse_relu_depthwise_conv_ << std::endl; os << "fuse_broadcast_ops_: " << strategy.fuse_broadcast_ops_ << std::endl; os << "sync_batch_norm_: " << strategy.sync_batch_norm_ << std::endl; os << "fuse_gemm_epilogue_: " << strategy.fuse_gemm_epilogue_ << std::endl; os << "fused_attention_: " << strategy.fused_attention_ << std::endl; os << "mkldnn_enabled_op_types_: "; for (auto str : strategy.mkldnn_enabled_op_types_) { os << str << ", "; } os << std::endl; os << "memory_optimize_: " << strategy.memory_optimize_ << std::endl; os << "enable_inplace_: " << strategy.enable_inplace_ << std::endl; os << "allow_cuda_graph_capture_: " << strategy.allow_cuda_graph_capture_ << std::endl; os << "enable_inference_pass_: " << strategy.enable_inference_pass_ << std::endl; os << "delete_dropout_: " << strategy.delete_dropout_ << std::endl; os << "use_mkldnn_: " << strategy.use_mkldnn_ << std::endl; os << "is_distribution_: " << strategy.is_distribution_ << std::endl; os << "async_mode_: " << strategy.async_mode_ << std::endl; os << "num_trainers_: " << strategy.num_trainers_ << std::endl; os << "trainer_id_: " << strategy.trainer_id_ << std::endl; os << "trainers_endpoints_: "; for (auto str : strategy.trainers_endpoints_) { os << str << ", "; } os << std::endl; os << "nccl_comm_num_: " << strategy.nccl_comm_num_ << std::endl; os << "bkcl_comm_num_: " << strategy.bkcl_comm_num_ << std::endl; os << "use_hierarchical_allreduce_: " << strategy.use_hierarchical_allreduce_ << std::endl; os << "hierarchical_allreduce_inter_nranks_: " << strategy.hierarchical_allreduce_inter_nranks_ << std::endl; os << "enable_parallel_graph_: " << strategy.enable_parallel_graph_ << std::endl; return os; } } // namespace details } // namespace framework } // namespace paddle