# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import contextlib import unittest import numpy as np import six import pickle import random import paddle import paddle.fluid as fluid import paddle.distributed as dist import paddle.fluid.dygraph as dygraph from paddle.fluid import core from paddle.fluid.dygraph.nn import Linear from test_dist_base import print_to_err, print_to_out, runtime_main, TestParallelDyGraphRunnerBase seed = 90 RUN_STEP = 20 batch_size = 4 batch_num = 1000 class SimpleNet(fluid.Layer): def __init__(self): super(SimpleNet, self).__init__() self.net_a = Linear(input_dim=10, output_dim=20) self.net_b = Linear(input_dim=20, output_dim=5) self.net_c = Linear(input_dim=5, output_dim=10) def forward(self, x): x = self.net_a(x) x = self.net_b(x) x = self.net_c(x) return x class TestNoSync(TestParallelDyGraphRunnerBase): def get_model(self): model = SimpleNet() train_reader = paddle.batch( fake_sample_reader(), batch_size=batch_size, drop_last=True) optimizer = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters()) return model, train_reader, optimizer def run_one_loop(self, model, optimizer, batch): x_data = np.array([x for x in batch]) x_data = x_data.reshape((-1, 10)) x = paddle.to_tensor(x_data) out = model(x) loss = out.sum() / len(batch) return loss def run_trainer(self, args): if fluid.core.is_compiled_with_cuda(): device_id = int(os.getenv("FLAGS_selected_gpus", "0")) place = fluid.CUDAPlace(device_id) else: assert ("Only support CUDAPlace for now.") with fluid.dygraph.guard(place): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed np.random.seed(seed) random.seed(seed) model, train_reader, opt = self.get_model() if args.update_method == "nccl2": dist.init_parallel_env() print_to_err( type(self).__name__, "begin to prepare context in dygraph with nccl2") if not args.find_unused_parameters: model = paddle.DataParallel( model, find_unused_parameters=False) else: model = paddle.DataParallel( model, find_unused_parameters=True) print_to_err(type(self).__name__, "model built in dygraph") out_losses = [] print_to_err(type(self).__name__, "begin to run dygraph training") for step_id, data in enumerate(train_reader()): data = self._get_data(data, args) if step_id == RUN_STEP: break if step_id % 3 != 0: if args.update_method == "nccl2": with model.no_sync(): loss = self.run_one_loop(model, opt, data) loss.backward() else: loss = self.run_one_loop(model, opt, data) loss.backward() else: loss = self.run_one_loop(model, opt, data) loss.backward() opt.minimize(loss) print_to_err( type(self).__name__, "loss at step %d: %f" % (step_id, loss.numpy())) out_losses.append(loss.numpy()) if not args.accumulate_gradient: model.clear_gradients() print_to_out(out_losses) def run_trainer_with_spawn(self, args): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed np.random.seed(seed) random.seed(seed) args.trainer_id = dist.get_rank() if args.update_method == "nccl2": dist.init_parallel_env() model, train_reader, opt = self.get_model() if args.update_method == "nccl2": if args.find_unused_parameters: model = paddle.DataParallel(model, find_unused_parameters=True) else: model = paddle.DataParallel(model, find_unused_parameters=False) out_losses = [] for step_id, data in enumerate(train_reader()): data = self._get_data(data, args) if step_id == RUN_STEP: break if step_id % 3 != 0: if args.update_method == "nccl2": with model.no_sync(): loss = self.run_one_loop(model, opt, data) loss.backward() else: loss = self.run_one_loop(model, opt, data) loss.backward() else: loss = self.run_one_loop(model, opt, data) loss.backward() opt.minimize(loss) print_to_err( type(self).__name__, "loss at step %d: %f" % (step_id, loss.numpy())) out_losses.append(loss.numpy()) model.clear_gradients() print_to_out(out_losses) return out_losses def fake_sample_reader(): def __reader__(): for i in range(batch_num): x_data = np.random.random_sample((10, )).astype('float32') yield x_data return __reader__ if __name__ == "__main__": runtime_main(TestNoSync)