/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/float16.h" #ifdef __HIPCC__ #define ELEMENTWISE_BLOCK_SIZE 256 #else #define ELEMENTWISE_BLOCK_SIZE 512 #endif namespace paddle { namespace operators { enum ElementwiseType { kUnary = 1, kBinary = 2 }; template struct alignas(sizeof(T) * Size) CudaAlignedVector { T val[Size]; }; template int GetVectorizedSizeImpl(const T *pointer) { uint64_t address = reinterpret_cast(pointer); constexpr int vec4 = std::alignment_of>::value; // NOLINT constexpr int vec2 = std::alignment_of>::value; // NOLINT if (address % vec4 == 0) { return 4; } else if (address % vec2 == 0) { return 2; } return 1; } template int GetVectorizedSize(const std::vector &ins, const std::vector &outs) { int vec_size = 4; for (auto iter = ins.begin(); iter != ins.end(); ++iter) { vec_size = std::min(vec_size, GetVectorizedSizeImpl((*iter)->data())); } for (auto iter = outs.begin(); iter != outs.end(); ++iter) { vec_size = std::min(vec_size, GetVectorizedSizeImpl((*iter)->data())); } return vec_size; } template struct ElementwiseDataWrapper { OutT *out; const InT *in0; const InT *in1; __device__ ElementwiseDataWrapper(OutT *out, const InT *in0, const InT *in1 = nullptr) : out(out), in0(in0), in1(in1) {} using InVecType = CudaAlignedVector; using OutVecType = CudaAlignedVector; inline __device__ void load_vector(InVecType args[], int idx) { const InVecType *x_vec = reinterpret_cast(in0); args[0] = x_vec[idx]; if (ET == ElementwiseType::kBinary) { const InVecType *y_vec = reinterpret_cast(in1); args[1] = y_vec[idx]; } } inline __device__ void load_scalar(InT args[], int idx) { args[0] = in0[idx]; if (ET == ElementwiseType::kBinary) { args[1] = in1[idx]; } } inline __device__ void store_vector(OutVecType res, int idx) { OutVecType *out_vec = reinterpret_cast(out); out_vec[idx] = res; } inline __device__ void store_scalar(OutT res, int idx) { out[idx] = res; } }; template __device__ void VectorizedKernelImpl( ElementwiseDataWrapper data, Functor func, int tid) { using InVecType = CudaAlignedVector; using OutVecType = CudaAlignedVector; InVecType ins_vec[ET]; OutVecType out_vec; InT *ins_ptr[ET]; OutT *out_ptr; #pragma unroll for (int i = 0; i < ET; ++i) { ins_ptr[i] = reinterpret_cast(&(ins_vec[i])); } out_ptr = reinterpret_cast(&out_vec); // load data.load_vector(ins_vec, tid); // compute #pragma unroll for (int i = 0; i < VecSize; ++i) { InT ins[ET]; #pragma unroll for (int j = 0; j < ET; ++j) { ins[j] = ins_ptr[j][i]; } out_ptr[i] = func(ins); } // store data.store_vector(out_vec, tid); } template __device__ void ScalarKernelImpl( ElementwiseDataWrapper data, Functor func, int start, int remain) { InT ins[ET]; OutT out; for (int i = 0; i < remain; ++i) { int idx = start + i; // load data.load_scalar(ins, idx); // compute out = func(ins); // store data.store_scalar(out, idx); } } template __global__ void VectorizedKernel(const InT *__restrict__ in0, const InT *__restrict__ in1, OutT *out, int size, Functor func) { int tid = blockIdx.x * blockDim.x + threadIdx.x; int remain = size - VecSize * tid; remain = remain > 0 ? remain : 0; auto data = ElementwiseDataWrapper(out, in0, in1); if (remain >= VecSize) { VectorizedKernelImpl(data, func, tid); } else { ScalarKernelImpl(data, func, tid * VecSize, remain); } } template __global__ void ScalarKernel(const InT *__restrict__ in0, const InT *__restrict__ in1, OutT *out, int size, Functor func) { auto data = ElementwiseDataWrapper(out, in0, in1); int tid = blockIdx.x * blockDim.x + threadIdx.x; int remain = tid < size ? 1 : 0; ScalarKernelImpl(data, func, tid, remain); } template void LaunchElementwiseCudaKernel( const platform::CUDADeviceContext &ctx, const std::vector &ins, std::vector *outs, Functor func) { // calculate the max vec_size for all ins and outs auto size = ins[0]->numel(); int vec_size = GetVectorizedSize(ins, *outs); int block_size = ELEMENTWISE_BLOCK_SIZE; int grid_size = ((size + vec_size - 1) / vec_size + block_size - 1) / block_size; const InT *in0 = ins[0]->data(); const InT *in1 = (ET == ElementwiseType::kBinary) ? ins[1]->data() : nullptr; OutT *out = (*outs)[0]->data(); // cuda kernel auto stream = ctx.stream(); switch (vec_size) { case 4: VectorizedKernel<<>>( in0, in1, out, size, func); break; case 2: VectorizedKernel<<>>( in0, in1, out, size, func); break; case 1: ScalarKernel<<>>(in0, in1, out, size, func); break; default: PADDLE_THROW(platform::errors::Unimplemented( "Unsupported vectorized size: %d !", vec_size)); break; } } } // namespace operators } // namespace paddle