// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/gather_op_handle.h" namespace paddle { namespace framework { namespace details { static Tensor *GetTensorFromVar(Variable *in_var) { if (in_var->IsType()) { return in_var->GetMutable(); } else if (in_var->IsType()) { return in_var->GetMutable()->mutable_value(); } else { PADDLE_THROW("Var should be LoDTensor or SelectedRows"); } return nullptr; } GatherOpHandle::GatherOpHandle(const std::vector &local_scopes, const std::vector &places) : local_scopes_(local_scopes), places_(places) {} void GatherOpHandle::RunImpl() { PADDLE_ENFORCE_EQ(this->inputs_.size(), places_.size()); PADDLE_ENFORCE_EQ(this->outputs_.size(), 1); // Wait input done, this Wait is asynchronous operation for (auto *in : inputs_) { if (inputs_[0]->generated_op_) { auto &p = static_cast(in)->place_; in->generated_op_->Wait(dev_ctxes_[p]); } } auto in_0_handle = static_cast(inputs_[0]); auto pre_in_var = local_scopes_[in_0_handle->scope_idx_]->FindVar(in_0_handle->name_); std::vector out_rows; std::vector in_tensors; std::vector in_places; // gather the inputs for (auto *in : inputs_) { auto in_handle = static_cast(in); auto in_p = in_handle->place_; in_places.push_back(in_p); PADDLE_ENFORCE_LT(in_handle->scope_idx_, local_scopes_.size(), "%s is not the the local_scopes ", in_handle->name_); auto *s = local_scopes_[in_handle->scope_idx_]; auto in_var = s->FindVar(in_handle->name_); PADDLE_ENFORCE_EQ(in_var->Type(), pre_in_var->Type(), "The type of input is not consistent."); if (in_var->IsType()) { auto &pre_in = pre_in_var->Get(); auto &in_sr = in_var->Get(); auto in_sr_rows = in_sr.rows(); out_rows.insert(out_rows.begin(), in_sr_rows.begin(), in_sr_rows.end()); PADDLE_ENFORCE_EQ(pre_in.height(), in_sr.height(), ""); PADDLE_ENFORCE_EQ(pre_in.GetCompleteDims(), in_sr.GetCompleteDims(), ""); } else if (in_var->IsType()) { auto &pre_in = pre_in_var->Get(); auto &in_lodtensor = in_var->Get(); PADDLE_ENFORCE_EQ(in_lodtensor.lod(), pre_in.lod()); PADDLE_ENFORCE_EQ(in_lodtensor.dims(), pre_in.dims()); } else { PADDLE_THROW("Var should be LoDTensor or SelectedRows."); } in_tensors.push_back(GetTensorFromVar(in_var)); pre_in_var = in_var; } // write the output auto out_handle = static_cast(this->outputs_[0]); auto &out_place = out_handle->place_; auto out_scope_idx = out_handle->scope_idx_; auto out_var = local_scopes_[out_scope_idx]->FindVar(out_handle->name_); if (pre_in_var->IsType()) { auto &pre_in = pre_in_var->Get(); auto out = out_var->GetMutable(); out->set_height(pre_in.height()); out->set_rows(out_rows); size_t rows = out_rows.size(); DDim out_dim = pre_in.GetCompleteDims(); out_dim[0] = static_cast(rows); out->mutable_value()->Resize(out_dim); out->mutable_value()->mutable_data(out_place, pre_in.value().type()); auto out_tensor = out->mutable_value(); // copy int s = 0, e = 0; for (size_t j = 0; j < in_tensors.size(); ++j) { e += in_tensors[j]->dims()[0]; auto sub_out = out_tensor->Slice(s, e); paddle::framework::TensorCopy(*(in_tensors[j]), out_place, *(dev_ctxes_[in_places[j]]), &sub_out); s = e; } } else if (pre_in_var->IsType()) { } else { PADDLE_THROW("Var should be LoDTensor or SelectedRows."); } } std::string GatherOpHandle::Name() const { return "broadcast"; } } // namespace details } // namespace framework } // namespace paddle