/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/activation_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/activation_functor.h" namespace phi { template void ActivationGradXPUImpl(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* d_out, DenseTensor* d_x, const Functor& functor) { PADDLE_ENFORCE_NOT_NULL( d_out, errors::NotFound("The input DenseTensor dOut can not be nullptr")); PADDLE_ENFORCE_NOT_NULL( d_x, errors::NotFound("The output DenseTensor dX can not be nullptr")); if (!out) { out = d_out; // fake out } dev_ctx.template Alloc(d_x); functor(dev_ctx, x, out, d_out, d_x); } #define DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPX(name, functor_class) \ template \ void name##GradKernel(const Context& dev_ctx, \ const DenseTensor& x, \ const DenseTensor& dout, \ DenseTensor* dx) { \ functor_class functor; \ ActivationGradXPUImpl>( \ dev_ctx, &x, nullptr, &dout, dx, functor); \ } #define DEFINE_XPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX( \ name, functor_class, attr) \ template \ void name##GradKernel(const Context& dev_ctx, \ const DenseTensor& x, \ const DenseTensor& dout, \ float attr, \ DenseTensor* dx) { \ functor_class functor; \ auto attrs = functor.GetAttrs(); \ *(attrs[0].second) = attr; \ ActivationGradXPUImpl>( \ dev_ctx, &x, nullptr, &dout, dx, functor); \ } #define DEFINE_XPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX( \ name, functor_class, attr1, attr2) \ template \ void name##GradKernel(const Context& dev_ctx, \ const DenseTensor& x, \ const DenseTensor& dout, \ float attr1, \ float attr2, \ DenseTensor* dx) { \ functor_class functor; \ auto attrs = functor.GetAttrs(); \ *(attrs[0].second) = attr1; \ *(attrs[1].second) = attr2; \ ActivationGradXPUImpl>( \ dev_ctx, &x, nullptr, &dout, dx, functor); \ } #define DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPOUT(name, functor_class) \ template \ void name##GradKernel(const Context& dev_ctx, \ const DenseTensor& out, \ const DenseTensor& dout, \ DenseTensor* dx) { \ functor_class functor; \ ActivationGradXPUImpl>( \ dev_ctx, nullptr, &out, &dout, dx, functor); \ } #define DEFINE_XPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPOUT( \ name, functor_class, attr) \ template \ void name##GradKernel(const Context& dev_ctx, \ const DenseTensor& out, \ const DenseTensor& dout, \ float attr, \ DenseTensor* dx) { \ functor_class functor; \ auto attrs = functor.GetAttrs(); \ *(attrs[0].second) = attr; \ ActivationGradXPUImpl>( \ dev_ctx, nullptr, &out, &dout, dx, functor); \ } #define DEFINE_XPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT( \ name, functor_class, attr1, attr2) \ template \ void name##GradKernel(const Context& dev_ctx, \ const DenseTensor& out, \ const DenseTensor& dout, \ float attr1, \ float attr2, \ DenseTensor* dx) { \ functor_class functor; \ auto attrs = functor.GetAttrs(); \ *(attrs[0].second) = attr1; \ *(attrs[1].second) = attr2; \ ActivationGradXPUImpl>( \ dev_ctx, nullptr, &out, &dout, dx, functor); \ } #define DEFINE_XPU_ACTIVATION_GRAD_KERNEL_NODEP(name, functor_class) \ template \ void name##GradKernel( \ const Context& dev_ctx, const DenseTensor& dout, DenseTensor* dx) { \ functor_class functor; \ ActivationGradXPUImpl>( \ dev_ctx, nullptr, nullptr, &dout, dx, functor); \ } template int xpu_activation_backward(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx, std::function func) { /* TODO: relu tanh sigmoid are inplace */ const XPUType* x_data = nullptr; const XPUType* y_data = nullptr; const XPUType* y_grad = nullptr; if (x != nullptr) x_data = reinterpret_cast(x->data()); if (out != nullptr) y_data = reinterpret_cast(out->data()); if (dout != nullptr) y_grad = reinterpret_cast(dout->data()); XPUType* x_grad = reinterpret_cast(dx->data()); int r = func(dev_ctx.x_context(), x_data, y_data, y_grad, x_grad, dx->numel()); return r; } template struct XPUExpGradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { int r = xpu_activation_backward( dev_ctx, x, out, dout, dx, xpu::exp_grad); PADDLE_ENFORCE_XDNN_SUCCESS(r, "exp_grad"); } }; template struct XPULogGradFunctor : public funcs::BaseActivationFunctor { template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dOut, DenseTensor* dX) const { const T* x_data = nullptr; const T* dout_data = nullptr; if (x != nullptr) x_data = x->data(); if (dOut != nullptr) dout_data = dOut->data(); T* dx_data = dev_ctx.template Alloc(dX); int r = xpu::constant( dev_ctx.x_context(), dx_data, x->numel(), static_cast(1.0)); PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant"); auto x_dims = vectorize(x->dims()); // use [1] to replace [], because xpu not support [] if (x_dims.size() == 0) { x_dims = std::vector({1}); } // dx.device(d) = dout * (static_cast(1) / x); r = xpu::broadcast_div(dev_ctx.x_context(), reinterpret_cast(dx_data), reinterpret_cast(x_data), reinterpret_cast(dx_data), x_dims, x_dims); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_div"); r = xpu::broadcast_mul(dev_ctx.x_context(), reinterpret_cast(dx_data), reinterpret_cast(dout_data), reinterpret_cast(dx_data), x_dims, x_dims); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_mul"); } }; template struct XPULeakyReluGradFunctor : public funcs::BaseActivationFunctor { float alpha; typename funcs::BaseActivationFunctor::AttrPair GetAttrs() { return {{"alpha", &alpha}}; } template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { const T* x_data = nullptr; const T* y_grad = nullptr; if (x != nullptr) x_data = x->data(); if (dout != nullptr) y_grad = dout->data(); T* x_grad = dx->data(); auto xpu_context = dev_ctx.x_context(); // The signs of x and y are the same, // y == nullptr here, // so we give 2 x to the api int r = xpu::leaky_relu_grad(xpu_context, reinterpret_cast(x_data), reinterpret_cast(x_data), reinterpret_cast(y_grad), reinterpret_cast(x_grad), dx->numel(), alpha); PADDLE_ENFORCE_XDNN_SUCCESS(r, "leaky_relu_grad"); } }; template struct XPUHardSigmoidGradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; float slope; float offset; typename funcs::BaseActivationFunctor::AttrPair GetAttrs() { return {{"slope", &slope}, {"offset", &offset}}; } template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { const T* y_data = out->data(); const T* y_grad = dout->data(); T* x_grad = dx->data(); auto xpu_context = dev_ctx.x_context(); int r = xpu::hard_sigmoid_grad( xpu_context, reinterpret_cast( y_data), // hard_sigmoid_grad do not need x_data reinterpret_cast(y_data), reinterpret_cast(y_grad), reinterpret_cast(x_grad), dx->numel(), slope); PADDLE_ENFORCE_XDNN_SUCCESS(r, "hard_sigmoid_grad"); } }; template struct XPUHardSwishGradFunctor : public funcs::BaseActivationFunctor { float threshold; float scale; float offset; typename funcs::BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}}; } template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { using XPUType = typename XPUTypeTrait::Type; PADDLE_ENFORCE_EQ( threshold, 6.0f, errors::External("Not support threshold [%f] in XPU", threshold)); PADDLE_ENFORCE_EQ( scale, 6.0f, errors::External("Not support scale [%f] in XPU", scale)); PADDLE_ENFORCE_EQ( offset, 3.0f, errors::External("Not support offset [%f] in XPU", offset)); int r = xpu_activation_backward( dev_ctx, x, out, dout, dx, xpu::hard_swish_grad); PADDLE_ENFORCE_XDNN_SUCCESS(r, "hard_swish_grad"); } }; template struct XPUReciprocalGradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { int r = xpu_activation_backward( dev_ctx, x, out, dout, dx, xpu::reciprocal_grad); PADDLE_ENFORCE_XDNN_SUCCESS(r, "reciprocal_grad"); } }; template struct XPUReluGradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { int r = xpu_activation_backward( dev_ctx, x, out, dout, dx, xpu::relu_grad); PADDLE_ENFORCE_XDNN_SUCCESS(r, "relu_grad"); } }; template struct XPURelu6GradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; float threshold; typename funcs::BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}}; } template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { int r = xpu_activation_backward( dev_ctx, x, out, dout, dx, xpu::relu6_grad); PADDLE_ENFORCE_XDNN_SUCCESS(r, "relu6_grad"); } }; template struct XPUSiluGradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { dev_ctx.template Alloc(dx); const XPUType* x_data = reinterpret_cast(x->data()); const XPUType* y_grad = reinterpret_cast(dout->data()); XPUType* x_grad = reinterpret_cast(dx->data()); int r = xpu::swish_grad( dev_ctx.x_context(), x_data, y_grad, x_grad, dx->numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "swish_grad"); } }; template struct XPUSigmoidGradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { int r = xpu_activation_backward( dev_ctx, x, out, dout, dx, xpu::sigmoid_grad); PADDLE_ENFORCE_XDNN_SUCCESS(r, "sigmoid_grad"); } }; template struct XPUTanhGradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { int r = xpu_activation_backward( dev_ctx, x, out, dout, dx, xpu::tanh_grad); PADDLE_ENFORCE_XDNN_SUCCESS(r, "tanh_grad"); } }; template struct XPUSquareGradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { int r = xpu_activation_backward( dev_ctx, x, out, dout, dx, xpu::square_grad); PADDLE_ENFORCE_XDNN_SUCCESS(r, "square_grad"); } }; template struct XPUSqrtGradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { int r = xpu_activation_backward( dev_ctx, x, out, dout, dx, xpu::sqrt_grad); PADDLE_ENFORCE_XDNN_SUCCESS(r, "sqrt_grad"); } }; template void PowGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& dout, const Scalar& factor, DenseTensor* dx) { dev_ctx.template Alloc(dx); const T* x_data = x.data(); const T* y_grad = dout.data(); T* x_grad = dx->data(); // check dims: all dims should equal auto x_dims = vectorize(x.dims()); auto dy_dims = vectorize(dout.dims()); auto dx_dims = vectorize(dx->dims()); PADDLE_ENFORCE_EQ(x_dims, dy_dims, errors::PreconditionNotMet("x_dims should match dy_dims.")); PADDLE_ENFORCE_EQ(x_dims, dx_dims, errors::PreconditionNotMet("x_dims should match dx_dims.")); float pow_factor = factor.to(); auto xpu_context = dev_ctx.x_context(); // int pow_grad(Context* ctx, const T* x, const T* dy, T* dx, int len, float // factor); int r = xpu::pow_grad(xpu_context, x_data, y_grad, x_grad, x.numel(), pow_factor); PADDLE_ENFORCE_XDNN_SUCCESS(r, "pow_grad"); } template struct XPUSwishGradFunctor : public funcs::BaseActivationFunctor { using XPUType = typename XPUTypeTrait::Type; float beta; typename funcs::BaseActivationFunctor::AttrPair GetAttrs() { return {{"beta", &beta}}; } template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { const XPUType* x_data = reinterpret_cast(x->data()); const XPUType* y_grad = reinterpret_cast(dout->data()); XPUType* x_grad = reinterpret_cast(dx->data()); auto xpu_context = dev_ctx.x_context(); int r = xpu::swish_grad(xpu_context, x_data, y_grad, x_grad, dx->numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "swish_grad"); } }; template struct XPUMishGradFunctor : public funcs::BaseActivationFunctor { float threshold; typename funcs::BaseActivationFunctor::AttrPair GetAttrs() { return {{"threshold", &threshold}}; } template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dout, DenseTensor* dx) const { const T* x_data = x->data(); const T* y_grad = dout->data(); T* x_grad = dx->data(); auto xpu_context = dev_ctx.x_context(); int r = xpu::mish_grad( xpu_context, reinterpret_cast(x_data), reinterpret_cast(x_data), // mish_grad do not need y_data reinterpret_cast(y_grad), reinterpret_cast(x_grad), dx->numel(), threshold); PADDLE_ENFORCE_XDNN_SUCCESS(r, "mish_grad"); } }; template struct XPUSoftPlusGradFunctor : public funcs::BaseActivationFunctor { float beta; float threshold; typename funcs::BaseActivationFunctor::AttrPair GetAttrs() { return {{"beta", &beta}, {"threshold", &threshold}}; } template void operator()(const Context& dev_ctx, const DenseTensor* x, const DenseTensor* out, const DenseTensor* dOut, DenseTensor* dX) const { const T* x_data = x->data(); const T* y_grad = dOut->data(); T* x_grad = dX->data(); auto xpu_context = dev_ctx.x_context(); int r = xpu::softplus_grad(xpu_context, reinterpret_cast(x_data), reinterpret_cast( x_data), // softplus_grad do not need y_data reinterpret_cast(y_grad), reinterpret_cast(x_grad), dX->numel(), beta, threshold); PADDLE_ENFORCE_XDNN_SUCCESS(r, "softplus_grad"); } }; DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Exp, XPUExpGradFunctor); DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Reciprocal, XPUReciprocalGradFunctor); DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Sigmoid, XPUSigmoidGradFunctor); DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Sqrt, XPUSqrtGradFunctor); DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Tanh, XPUTanhGradFunctor); DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Relu, XPUReluGradFunctor); DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPX(Silu, XPUSiluGradFunctor); DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPX(Log, XPULogGradFunctor); DEFINE_XPU_ACTIVATION_GRAD_KERNEL_DEPX(Square, XPUSquareGradFunctor); DEFINE_XPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(Swish, XPUSwishGradFunctor, beta); DEFINE_XPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(Mish, XPUMishGradFunctor, threshold); DEFINE_XPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(LeakyRelu, XPULeakyReluGradFunctor, alpha); DEFINE_XPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPOUT(Relu6, XPURelu6GradFunctor, threshold); DEFINE_XPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(Softplus, XPUSoftPlusGradFunctor, beta, threshold) DEFINE_XPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(HardSigmoid, XPUHardSigmoidGradFunctor, slope, offset) template void HardSwishGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& dout, float threshold, float scale, float offset, DenseTensor* dx) { XPUHardSwishGradFunctor functor; auto attrs = functor.GetAttrs(); *(attrs[0].second) = threshold; *(attrs[1].second) = scale; *(attrs[2].second) = offset; ActivationGradXPUImpl>( dev_ctx, &x, nullptr, &dout, dx, functor); } } // namespace phi PD_REGISTER_KERNEL(relu_grad, XPU, ALL_LAYOUT, phi::ReluGradKernel, float, phi::dtype::float16) {} PD_REGISTER_KERNEL(silu_grad, XPU, ALL_LAYOUT, phi::SiluGradKernel, float, phi::dtype::float16) {} #define PD_REGISTER_ACTIVATION_GRAD_KERNEL(name, func) \ PD_REGISTER_KERNEL(name, XPU, ALL_LAYOUT, phi::func, float) {} PD_REGISTER_KERNEL(tanh_grad, XPU, ALL_LAYOUT, phi::TanhGradKernel, float, phi::dtype::float16) {} PD_REGISTER_KERNEL(square_grad, XPU, ALL_LAYOUT, phi::SquareGradKernel, float, phi::dtype::float16) {} PD_REGISTER_ACTIVATION_GRAD_KERNEL(exp_grad, ExpGradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(log_grad, LogGradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(leaky_relu_grad, LeakyReluGradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_sigmoid_grad, HardSigmoidGradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(hardswish_grad, HardSwishGradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(reciprocal_grad, ReciprocalGradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(relu6_grad, Relu6GradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_grad, SigmoidGradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(sqrt_grad, SqrtGradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(mish_grad, MishGradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(swish_grad, SwishGradKernel) PD_REGISTER_ACTIVATION_GRAD_KERNEL(softplus_grad, SoftplusGradKernel) PD_REGISTER_KERNEL(pow_grad, XPU, ALL_LAYOUT, phi::PowGradKernel, float) {}