// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/flip_kernel.h" #include #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { constexpr size_t dim_bitset_size = 64; template void FlipKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& axis, DenseTensor* out) { auto x_dims = x.dims(); const int total_dims = x_dims.size(); std::bitset dim_bitset; for (size_t i = 0; i < axis.size(); ++i) { int dim = axis[i]; if (axis[i] < 0) { dim += total_dims; } dim_bitset[dim] = true; } auto x_strides = phi::stride(x_dims); auto numel = x.numel(); const T* x_data = x.data(); T* out_data = dev_ctx.template Alloc(out); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int64_t i = 0; i < numel; ++i) { int64_t cur_indices = i; int64_t rem = 0; int64_t dst_offset = 0; for (int d = 0; d < total_dims; ++d) { int64_t temp = cur_indices; cur_indices = cur_indices / x_strides[d]; rem = temp - cur_indices * x_strides[d]; dst_offset += dim_bitset[d] ? (x_dims[d] - 1 - cur_indices) * x_strides[d] : cur_indices * x_strides[d]; cur_indices = rem; } out_data[i] = x_data[dst_offset]; } } } // namespace phi PD_REGISTER_KERNEL(flip, CPU, ALL_LAYOUT, phi::FlipKernel, float, double, int32_t, int64_t, bool, phi::dtype::complex, phi::dtype::complex) {}