// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "mlir/IR/Dialect.h" #include "mlir/Pass/Pass.h" #include "paddle/infrt/dialect/tensorrt/trt_ops.h" namespace infrt { namespace trt { /* * trtOpConverterPass. * * source ir: * func @main() -> tensor { * %a = "pd.feed"()... * %d, %f = "trt.create_engine"(%a) { * %m = "pd.conv2d"(%a)... * %n = "pd.conv3d"(%m)... * %s = "pd.conv2d"(%a)... * "Infrt.return" %n, %s * } ... * "pd.fetch" %d, %f * } * * destination ir: * func @main() -> tensor { * %a = "pd.feed"()... * %d, %f = "trt.create_engine"(%a) { * %m = "trt.Convolution"(%a)... * %n = "trt.Convolution"(%m)... * %s = "trt.Convolution"(%a)... * "Infrt.return" %n, %s * } ... * "pd.fetch" %d, %f * } */ struct TRTOpConverterPass : public mlir::PassWrapper> { void getDependentDialects(mlir::DialectRegistry ®istry) const override { registry.insert(); } ::llvm::StringRef getName() const override { return "trtOpConverterPass"; } void runOnOperation() final; }; } // namespace trt } // namespace infrt