/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/detail/safe_ref.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/depthwise_conv.h" #include "paddle/fluid/operators/math/im2col.h" #include "paddle/fluid/operators/math/vol2col.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; constexpr int kConvMKLDNNFP32 = 1; constexpr int kConvMKLDNNINT8 = 2; constexpr int MaxKeyLength = 256; // Base convolution operator definations for other conv // like operators to reuse the implementation. inline int ConvOutputSize(int input_size, int filter_size, int dilation, int padding, int stride) { const int dkernel = dilation * (filter_size - 1) + 1; int output_size = (input_size + 2 * padding - dkernel) / stride + 1; PADDLE_ENFORCE_GT( output_size, 0, "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and " "stride(%d), the output size is less than 0, please check " "again. Input_size:%d", padding, filter_size, dilation, stride, input_size); return output_size; } inline int ConvOutputSize(int input_size, int filter_size, int dilation, int padding_1, int padding_2, int stride) { const int dkernel = dilation * (filter_size - 1) + 1; int output_size = (input_size + padding_1 + padding_2 - dkernel) / stride + 1; PADDLE_ENFORCE_GT(output_size, 0, "Due to the settings of padding(%d, %d), filter_size(%d), " "dilation(%d) and " "stride(%d), the output size is less than 0, please check " "again. Input_size:%d", padding_1, padding_2, filter_size, dilation, stride, input_size); return output_size; } inline void UpdatePaddingAndDilation(std::vector* paddings, std::vector* dilation, const std::string padding_algorithm, const framework::DDim data_dims, const std::vector& strides, const std::vector& ksize) { // set padding size == data_dims.size() * 2 auto data_shape = framework::vectorize(data_dims); if (static_cast(paddings->size()) == data_dims.size()) { for (int i = 0; i < data_dims.size(); ++i) { int copy_pad = *(paddings->begin() + 2 * i); paddings->insert(paddings->begin() + 2 * i + 1, copy_pad); } } else { PADDLE_ENFORCE_EQ( data_dims.size() * 2, paddings->size(), "Paddings size should be the same or twice as the input data size."); } // when padding_algorithm is "VALID" or "SAME" if (padding_algorithm == "SAME") { for (int i = 0; i < data_dims.size(); ++i) { int out_size = (data_dims[i] + strides[i] - 1) / strides[i]; int pad_sum = std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i], 0); int pad_0 = pad_sum / 2; int pad_1 = pad_sum - pad_0; *(paddings->begin() + i * 2) = pad_0; *(paddings->begin() + i * 2 + 1) = pad_1; // dilation *(dilation->begin() + i) = 1; } } else if (padding_algorithm == "VALID") { for (auto it = paddings->begin(); it != paddings->end(); it++) { *it = 0; } } } inline bool IsExpand(const std::vector& filter_dim, const std::vector& strides, const std::vector& paddings, const std::vector& dilations) { bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true; for (size_t j = 0; j < strides.size(); ++j) { filter_1 = filter_1 && (static_cast(filter_dim[j + 2]) == 1); strides_1 = strides_1 && (strides[j] == 1); padding_0 = padding_0 && (paddings[j] == 0); dilation_1 = dilation_1 && (dilations[j] == 1); } if (paddings.size() != strides.size()) { for (size_t j = 0; j < paddings.size(); ++j) { padding_0 = padding_0 && (paddings[j] == 0); } } return !(filter_1 && strides_1 && padding_0 && dilation_1); } template inline void ResizeToChannelFirst(const framework::ExecutionContext& context, const Tensor* input, Tensor* transformed_input) { int dim = input->dims().size() - 2; if (dim == 3) { // input transformed_input->Resize(input->dims()); auto in_dims_vec = framework::vectorize(input->dims()); in_dims_vec[1] = input->dims()[4]; in_dims_vec[2] = input->dims()[1]; in_dims_vec[3] = input->dims()[2]; in_dims_vec[4] = input->dims()[3]; transformed_input->Resize(framework::make_ddim(in_dims_vec)); transformed_input->mutable_data(context.GetPlace()); } else if (dim == 2) { // input transformed_input->Resize(input->dims()); auto in_dims_vec = framework::vectorize(input->dims()); in_dims_vec[1] = input->dims()[3]; in_dims_vec[2] = input->dims()[1]; in_dims_vec[3] = input->dims()[2]; transformed_input->Resize(framework::make_ddim(in_dims_vec)); transformed_input->mutable_data(context.GetPlace()); } } template inline void ResizeToChannelLast(const framework::ExecutionContext& context, const Tensor* input, Tensor* transformed_input) { int dim = input->dims().size() - 2; if (dim == 3) { // input transformed_input->Resize(input->dims()); auto in_dims_vec = framework::vectorize(input->dims()); in_dims_vec[1] = input->dims()[2]; in_dims_vec[2] = input->dims()[3]; in_dims_vec[3] = input->dims()[4]; in_dims_vec[4] = input->dims()[1]; transformed_input->Resize(framework::make_ddim(in_dims_vec)); transformed_input->mutable_data(context.GetPlace()); } else if (dim == 2) { // input transformed_input->Resize(input->dims()); auto in_dims_vec = framework::vectorize(input->dims()); in_dims_vec[1] = input->dims()[2]; in_dims_vec[2] = input->dims()[3]; in_dims_vec[3] = input->dims()[1]; transformed_input->Resize(framework::make_ddim(in_dims_vec)); transformed_input->mutable_data(context.GetPlace()); } } template inline void TransToChannelFirst(const framework::ExecutionContext& context, const Tensor* input, Tensor* transformed_input) { int dim = input->dims().size() - 2; if (dim == 3) { auto& dev_ctx = context.template device_context(); std::vector axis{0, 4, 1, 2, 3}; math::Transpose trans5; trans5(dev_ctx, *input, transformed_input, axis); } else if (dim == 2) { auto& dev_ctx = context.template device_context(); std::vector axis{0, 3, 1, 2}; math::Transpose trans4; trans4(dev_ctx, *input, transformed_input, axis); } } template inline void TransToChannelLast(const framework::ExecutionContext& context, const Tensor* input, Tensor* transformed_input) { int dim = input->dims().size() - 2; if (dim == 3) { auto& dev_ctx = context.template device_context(); std::vector axis{0, 2, 3, 4, 1}; math::Transpose trans5; trans5(dev_ctx, *input, transformed_input, axis); } else if (dim == 2) { auto& dev_ctx = context.template device_context(); std::vector axis{0, 2, 3, 1}; math::Transpose trans4; trans4(dev_ctx, *input, transformed_input, axis); } } // Define Op classes in .h file so that other conv // operator implementations can reuse the code. class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() final; protected: virtual void Apply() {} }; class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() final; protected: virtual void Apply() {} }; class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput { protected: std::unordered_map GetInputOutputWithSameType() const override { return std::unordered_map{ {"Input", /*->*/ "Output"}}; } }; class ConvOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override; }; class ConvOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override; }; class ConvOpDoubleGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override; }; template class GemmConvKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); // The filter will be reshaped in the calculations, // so here use an assignment operation, // that avoids modifying the variable in the Scope. Tensor filter = *context.Input("Filter"); Tensor* output = context.Output("Output"); output->mutable_data(context.GetPlace()); const int groups = context.Attr("groups"); const std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); std::vector dilations = context.Attr>("dilations"); const std::string padding_algorithm = context.Attr("padding_algorithm"); const std::string data_format = context.Attr("data_format"); const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); Tensor transformed_input(input->type()); Tensor transformed_output(output->type()); if (channel_last) { ResizeToChannelFirst(context, input, &transformed_input); TransToChannelFirst(context, input, &transformed_input); ResizeToChannelFirst(context, output, &transformed_output); } else { transformed_input = *input; transformed_output = *output; } // update padding and dilation auto trans_in_dims = transformed_input.dims(); auto filter_dims = filter.dims(); framework::DDim in_data_dims = framework::slice_ddim(trans_in_dims, 2, trans_in_dims.size()); framework::DDim filter_data_dims = framework::slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = framework::vectorize(filter_data_dims); UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); auto& dev_ctx = context.template device_context(); const int batch_size = static_cast(transformed_input.dims()[0]); // filter_shape_vec: // {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w} std::vector filter_shape_vec(framework::vectorize(filter.dims())); // output_shape_vec: // {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w} std::vector output_shape_vec( framework::vectorize(transformed_output.dims())); // use col_shape in the im2col calculation // col_shape_vec: // {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, // o_d,o_h, o_w} size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); col_shape_vec[0] = trans_in_dims[1] / groups; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2]; } framework::DDim col_shape(framework::make_ddim(col_shape_vec)); // use col_matrix_shape in the gemm calculation // size: // (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * o_h * // o_w) framework::DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim); bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations); Tensor col; // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. Tensor col_matrix; if (is_expand) { col = context.AllocateTmpTensor(col_shape, dev_ctx); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } framework::DDim in_matrix_shape = framework::slice_ddim( transformed_input.dims(), 1, transformed_input.dims().size()); framework::DDim filter_matrix_shape = {filter.dims()[0], filter.numel() / filter.dims()[0]}; filter.Resize(filter_matrix_shape); framework::DDim output_matrix_shape = { transformed_output.dims()[1], transformed_output.numel() / (transformed_output.dims()[0] * transformed_output.dims()[1])}; // convolution operator: im2col(or vol2col) + gemm int in_step = static_cast(transformed_input.dims()[1]) / groups; int out_step = static_cast(transformed_output.dims()[1]) / groups; math::Vol2ColFunctor vol2col; math::Im2ColFunctor im2col; auto blas = math::GetBlas(dev_ctx); for (int i = 0; i < batch_size; i++) { Tensor in_batch = transformed_input.Slice(i, i + 1).Resize(in_matrix_shape); Tensor out_batch = transformed_output.Slice(i, i + 1).Resize(output_matrix_shape); for (int g = 0; g < groups; g++) { Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col.ShareDataWith(in_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { im2col(dev_ctx, in_slice, dilations, strides, std::vector{paddings[0], paddings[2], paddings[1], paddings[3]}, &col); } else if (data_dim == 3U) { vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col); } // gemm Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice, T(0.0)); } } if (channel_last) { TransToChannelLast(context, &transformed_output, output); } } }; template class GemmConvGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); const Tensor* output_grad = context.Input(framework::GradVarName("Output")); Tensor* input_grad = context.Output(framework::GradVarName("Input")); Tensor* filter_grad = context.Output(framework::GradVarName("Filter")); // The filter and filter_grad will be reshaped in the calculations, // so here use an assignment operation, // that avoids modifying the variable in the Scope. Tensor filter = *context.Input("Filter"); if (!input_grad && !filter_grad) return; int groups = context.Attr("groups"); const std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); std::vector dilations = context.Attr>("dilations"); const std::string padding_algorithm = context.Attr("padding_algorithm"); const std::string data_format = context.Attr("data_format"); const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); Tensor transformed_input(input->type()); Tensor transformed_output_grad(output_grad->type()); if (channel_last) { ResizeToChannelFirst(context, input, &transformed_input); TransToChannelFirst(context, input, &transformed_input); ResizeToChannelFirst(context, output_grad, &transformed_output_grad); TransToChannelFirst(context, output_grad, &transformed_output_grad); } else { transformed_input = *input; transformed_output_grad = *output_grad; } // update padding and dilation auto in_dims = transformed_input.dims(); auto filter_dims = filter.dims(); framework::DDim in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size()); framework::DDim filter_data_dims = framework::slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = framework::vectorize(filter_data_dims); UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); const int batch_size = static_cast(transformed_input.dims()[0]); auto& dev_ctx = context.template device_context(); // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w} std::vector filter_shape_vec(framework::vectorize(filter.dims())); // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w} std::vector output_shape_vec( framework::vectorize(transformed_output_grad.dims())); // use col_shape in the im2col calculation // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d, // o_h, o_w} size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); col_shape_vec[0] = transformed_input.dims()[1] / groups; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2]; } framework::DDim col_shape(framework::make_ddim(col_shape_vec)); // use col_matrix_shape in the gemm calculation // size: (i_c/g * k_h * k_w, o_h * o_w) // or // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w) framework::DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1); framework::DDim input_shape = framework::slice_ddim( transformed_input.dims(), 1, transformed_input.dims().size()); framework::DDim filter_matrix_shape = {filter.dims()[0], filter.numel() / filter.dims()[0]}; filter.Resize(filter_matrix_shape); framework::DDim output_matrix_shape = { transformed_output_grad.dims()[1], transformed_output_grad.numel() / (transformed_output_grad.dims()[0] * transformed_output_grad.dims()[1])}; // convolution backward input operator: gemm + col2im(or col2vol) // convolution backward weight operator: im2col(or vol2col) + gemm int in_step = static_cast(transformed_input.dims()[1]) / groups; int out_step = static_cast(transformed_output_grad.dims()[1]) / groups; bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations); Tensor col; // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. Tensor col_matrix; if (is_expand) { col = context.AllocateTmpTensor(col_shape, dev_ctx); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } math::SetConstant set_zero; auto blas = math::GetBlas(dev_ctx); if (input_grad) { input_grad->mutable_data(context.GetPlace()); Tensor transformed_input_grad(input_grad->type()); if (channel_last) { ResizeToChannelFirst(context, input_grad, &transformed_input_grad); } else { transformed_input_grad = *input_grad; } // if is_expand is false, the operation of set_zero is unnecessary, // because math::matmul will reset input_grad. if (is_expand) { set_zero(dev_ctx, &transformed_input_grad, static_cast(0)); } math::Col2VolFunctor col2vol; math::Col2ImFunctor col2im; for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape); Tensor in_grad_batch = transformed_input_grad.Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // gemm Tensor out_grad_slice = out_grad_batch.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); Tensor in_grad_slice = in_grad_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col_matrix.ShareDataWith(in_grad_slice); col_matrix.Resize(col_matrix_shape); } blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0), &col_matrix, T(0.0)); if (is_expand && data_dim == 2U) { col2im(dev_ctx, col, dilations, strides, std::vector{paddings[0], paddings[2], paddings[1], paddings[3]}, &in_grad_slice); } else if (is_expand && data_dim == 3U) { col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice); } } } if (channel_last) { TransToChannelLast(context, &transformed_input_grad, input_grad); } } if (filter_grad) { filter_grad->mutable_data(context.GetPlace()); Tensor filter_grad_ = *filter_grad; filter_grad_.Resize(filter_matrix_shape); set_zero(dev_ctx, filter_grad, static_cast(0)); math::Im2ColFunctor im2col; math::Vol2ColFunctor vol2col; for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape); Tensor in_batch = transformed_input.Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // im2col Tensor out_grad_slice = out_grad_batch.Slice(g * out_step, (g + 1) * out_step); Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col.ShareDataWith(in_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { im2col(dev_ctx, in_slice, dilations, strides, std::vector{paddings[0], paddings[2], paddings[1], paddings[3]}, &col); } else if (data_dim == 3U) { vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col); } // gemm Tensor filter_grad_slice = filter_grad_.Slice(g * out_step, (g + 1) * out_step); blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0), &filter_grad_slice, T(1.0)); } } } } }; template class GemmConvDoubleGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& dev_ctx = ctx.template device_context(); PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true, "It must use CPUPlace."); const Tensor* X = ctx.Input("Input"); const Tensor* dY = ctx.Input("DOutput"); const Tensor* ddX = ctx.Input("DDInput"); const Tensor* ddW_in = ctx.Input("DDFilter"); Tensor* ddY = ctx.Output("DDOutput"); Tensor* dW = ctx.Output("DFilter"); Tensor* dX = ctx.Output("DInput"); Tensor W = detail::Ref(ctx.Input("Filter"), "Cannot find input Filter(%s) in scope)", ctx.InputNames("Filter")[0]); if (!ddY && !dW && !dX) return; const int groups = ctx.Attr("groups"); const std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); const std::string padding_algorithm = ctx.Attr("padding_algorithm"); const std::string data_format = ctx.Attr("data_format"); const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); // transform Tensor Tensor transformed_X(X->type()); Tensor transformed_dY(dY->type()); Tensor transformed_ddX(X->type()); if (channel_last) { ResizeToChannelFirst(ctx, X, &transformed_X); TransToChannelFirst(ctx, X, &transformed_X); ResizeToChannelFirst(ctx, dY, &transformed_dY); TransToChannelFirst(ctx, dY, &transformed_dY); if (ddX) { ResizeToChannelFirst(ctx, ddX, &transformed_ddX); TransToChannelFirst(ctx, ddX, &transformed_ddX); } } else { transformed_X = *X; transformed_dY = *dY; if (ddX) { transformed_ddX = *ddX; } } // update padding and dilation auto in_dims = transformed_X.dims(); auto filter_dims = W.dims(); framework::DDim in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size()); framework::DDim filter_data_dims = framework::slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = framework::vectorize(filter_data_dims); UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); const int batch_size = static_cast(transformed_X.dims()[0]); std::vector filter_shape_vec(framework::vectorize(W.dims())); std::vector output_shape_vec( framework::vectorize(transformed_dY.dims())); size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); // col_shape [in_channel/group, kh, kw, oh, ow] col_shape_vec[0] = transformed_X.dims()[1] / groups; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + data_dim + 1] = output_shape_vec[j + 2]; } framework::DDim col_shape(framework::make_ddim(col_shape_vec)); // col_matrix_shape [in_channel/group * kh * kw, oh * ow] framework::DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1); // input_shape [Cin, H, W] framework::DDim input_shape = framework::slice_ddim( transformed_X.dims(), 1, transformed_X.dims().size()); // filter_matrix_shape [Cout, Cin * kh * kw] framework::DDim filter_matrix_shape = {W.dims()[0], W.numel() / W.dims()[0]}; W.Resize(filter_matrix_shape); framework::DDim output_matrix_shape = { transformed_dY.dims()[1], transformed_dY.numel() / (transformed_dY.dims()[0] * transformed_dY.dims()[1])}; int in_step = static_cast(transformed_X.dims()[1]) / groups; int out_step = static_cast(transformed_dY.dims()[1]) / groups; bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations); Tensor col; Tensor col_matrix; if (is_expand) { col = ctx.AllocateTmpTensor(col_shape, dev_ctx); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } math::SetConstant set_zero; auto blas = math::GetBlas(dev_ctx); // dx convolution double grad: gemm + col2im(col2vol) // dx = ddw * dy ==> dx(N, Cin, H, W), ddw(Cout, Cin, kh, kw), dy(N, Cout, // oH, oW) if (dX && ddW_in) { Tensor ddW; ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape); dX->mutable_data(ctx.GetPlace()); Tensor transformed_dX(dX->type()); if (channel_last) { ResizeToChannelFirst(ctx, dX, &transformed_dX); } else { transformed_dX = *dX; } // if is_expand is false, the operation of set_zero is unnecessary // because math::matmul will reset dx if (is_expand) { set_zero(dev_ctx, &transformed_dX, static_cast(0)); } math::Col2VolFunctor col2vol; math::Col2ImFunctor col2im; for (int i = 0; i < batch_size; i++) { Tensor dy_batch = transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape); Tensor dx_batch = transformed_dX.Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // gemm Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step); Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step); Tensor dx_slice = dx_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col_matrix.ShareDataWith(dx_slice); col_matrix.Resize(col_matrix_shape); } blas.MatMul(ddw_slice, true, dy_slice, false, T(1.0), &col_matrix, T(0.0)); if (is_expand && data_dim == 2U) { col2im(dev_ctx, col, dilations, strides, std::vector{paddings[0], paddings[2], paddings[1], paddings[3]}, &dx_slice); } else if (is_expand && data_dim == 3U) { col2vol(dev_ctx, col, dilations, strides, paddings, &dx_slice); } } } if (channel_last) { TransToChannelLast(ctx, &transformed_dX, dX); } } // dw = ddx * dy ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout, // oH, oW) // dw convolution double grad: im2col(vol2col) + gemm if (dW && ddX) { dW->mutable_data(ctx.GetPlace()); set_zero(dev_ctx, dW, static_cast(0)); Tensor dW_arr = *dW; dW_arr.Resize(filter_matrix_shape); math::Im2ColFunctor im2col; math::Vol2ColFunctor vol2col; for (int i = 0; i < batch_size; ++i) { Tensor dy_batch = transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape); Tensor ddx_batch = transformed_ddX.Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; ++g) { // im2col Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step); Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col.ShareDataWith(ddx_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { im2col(dev_ctx, ddx_slice, dilations, strides, std::vector{paddings[0], paddings[2], paddings[1], paddings[3]}, &col); } else if (data_dim == 3U) { vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col); } Tensor dw_slice = dW_arr.Slice(g * out_step, (g + 1) * out_step); blas.MatMul(dy_slice, false, col_matrix, true, T(1.0), &dw_slice, T(1.0)); } } } // ddy = w * ddx + x * ddw ==> ddy(N, Cout, oH, oW), x/ddx(N, Cin, H, W), // w/ddw(Cout, Cin, kh, kw) // ddy convolution double grad: im2col(vol2col) + gemm if (ddY) { ddY->mutable_data(ctx.GetPlace()); Tensor transformed_ddY(ddY->type()); if (channel_last) { ResizeToChannelFirst(ctx, ddY, &transformed_ddY); } else { transformed_ddY = *ddY; } set_zero(dev_ctx, &transformed_ddY, static_cast(0)); math::Im2ColFunctor im2col; math::Vol2ColFunctor vol2col; for (int i = 0; i < batch_size; ++i) { Tensor ddy_batch = transformed_ddY.Slice(i, i + 1).Resize(output_matrix_shape); for (int g = 0; g < groups; ++g) { // gemm Tensor ddy_slice = ddy_batch.Slice(g * out_step, (g + 1) * out_step); if (ddX) { Tensor ddx_batch = transformed_ddX.Slice(i, i + 1).Resize(input_shape); Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col.ShareDataWith(ddx_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { im2col(dev_ctx, ddx_slice, dilations, strides, std::vector{paddings[0], paddings[2], paddings[1], paddings[3]}, &col); } else if (data_dim == 3U) { vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col); } Tensor w_slice = W.Slice(g * out_step, (g + 1) * out_step); blas.MatMul(w_slice, false, col_matrix, false, T(1.0), &ddy_slice, T(0.0)); } if (ddW_in) { Tensor x_batch = transformed_X.Slice(i, i + 1).Resize(input_shape); Tensor x_slice = x_batch.Slice(g * in_step, (g + 1) * in_step); Tensor ddW; ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape); if (!is_expand) { col.ShareDataWith(x_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { im2col(dev_ctx, x_slice, dilations, strides, std::vector{paddings[0], paddings[2], paddings[1], paddings[3]}, &col); } else if (data_dim == 3U) { vol2col(dev_ctx, x_slice, dilations, strides, paddings, &col); } // gemm Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step); blas.MatMul(ddw_slice, false, col_matrix, false, T(1.0), &ddy_slice, T(1.0)); } } } if (channel_last) { TransToChannelLast(ctx, &transformed_ddY, ddY); } } } }; template class DepthwiseConvKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); Tensor filter = *context.Input("Filter"); Tensor* output = context.Output("Output"); output->mutable_data(context.GetPlace()); const std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); std::vector dilations = context.Attr>("dilations"); bool fuse_relu = context.Attr("fuse_relu_before_depthwise_conv"); const std::string padding_algorithm = context.Attr("padding_algorithm"); const std::string data_format = context.Attr("data_format"); const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); if (channel_last) { PADDLE_ENFORCE_EQ( output->dims()[output->dims().size() - 1] % input->dims()[input->dims().size() - 1], 0, "The output channels must be a multiple of the input channels"); } else { PADDLE_ENFORCE_EQ( output->dims()[1] % input->dims()[1], 0, "The output channels must be a multiple of the input channels"); } // transform tensor Tensor transformed_input(input->type()); Tensor transformed_output(output->type()); if (channel_last) { ResizeToChannelFirst(context, input, &transformed_input); TransToChannelFirst(context, input, &transformed_input); ResizeToChannelFirst(context, output, &transformed_output); } else { transformed_input = *input; transformed_output = *output; } // update padding and dilation auto in_dims = transformed_input.dims(); auto filter_dims = filter.dims(); framework::DDim in_data_dims; in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size()); framework::DDim filter_data_dims = framework::slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = framework::vectorize(filter_data_dims); UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true; if (!is_sys_pad) { for (size_t i = 0; i < strides.size(); ++i) { paddings.erase(paddings.begin() + i + 1); } } auto& dev_ctx = context.template device_context(); if (fuse_relu) { math::DepthwiseConvFunctor depthwiseConv; depthwiseConv(dev_ctx, transformed_input, filter, strides, paddings, dilations, &transformed_output); } else { math::DepthwiseConvFunctor depthwiseConv; depthwiseConv(dev_ctx, transformed_input, filter, strides, paddings, dilations, &transformed_output); } if (channel_last) { TransToChannelLast(context, &transformed_output, output); } } }; template class DepthwiseConvGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); const Tensor* output_grad = context.Input(framework::GradVarName("Output")); Tensor* input_grad = context.Output(framework::GradVarName("Input")); Tensor* filter_grad = context.Output(framework::GradVarName("Filter")); Tensor filter = *context.Input("Filter"); if (!input_grad && !filter_grad) return; std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); std::vector dilations = context.Attr>("dilations"); bool fuse_relu = context.Attr("fuse_relu_before_depthwise_conv"); const std::string padding_algorithm = context.Attr("padding_algorithm"); const std::string data_format = context.Attr("data_format"); const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); // transform Tensor Tensor transformed_input(input->type()); Tensor transformed_output_grad(output_grad->type()); if (channel_last) { ResizeToChannelFirst(context, input, &transformed_input); TransToChannelFirst(context, input, &transformed_input); ResizeToChannelFirst(context, output_grad, &transformed_output_grad); TransToChannelFirst(context, output_grad, &transformed_output_grad); } else { transformed_input = *input; transformed_output_grad = *output_grad; } // update padding and dilation auto in_dims = transformed_input.dims(); auto filter_dims = filter.dims(); framework::DDim in_data_dims; in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size()); framework::DDim filter_data_dims = framework::slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = framework::vectorize(filter_data_dims); UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true; if (!is_sys_pad) { for (size_t i = 0; i < strides.size(); ++i) { paddings.erase(paddings.begin() + i + 1); } } math::SetConstant set_zero; auto& dev_ctx = context.template device_context(); if (input_grad) { input_grad->mutable_data(context.GetPlace()); Tensor transformed_input_grad(input_grad->type()); if (channel_last) { ResizeToChannelFirst(context, input_grad, &transformed_input_grad); } else { transformed_input_grad = *input_grad; } set_zero(dev_ctx, &transformed_input_grad, static_cast(0)); if (fuse_relu) { math::DepthwiseConvInputGradFunctor depthwiseConvInputGrad; depthwiseConvInputGrad(dev_ctx, transformed_input, filter, transformed_output_grad, strides, paddings, dilations, &transformed_input_grad); } else { math::DepthwiseConvInputGradFunctor depthwiseConvInputGrad; depthwiseConvInputGrad(dev_ctx, transformed_input, filter, transformed_output_grad, strides, paddings, dilations, &transformed_input_grad); } if (channel_last) { TransToChannelLast(context, &transformed_input_grad, input_grad); } } if (filter_grad) { filter_grad->mutable_data(context.GetPlace()); set_zero(dev_ctx, filter_grad, static_cast(0)); if (fuse_relu) { math::DepthwiseConvFilterGradFunctor depthwiseConvFilterGrad; depthwiseConvFilterGrad(dev_ctx, transformed_input, transformed_output_grad, strides, paddings, dilations, filter_grad); } else { math::DepthwiseConvFilterGradFunctor depthwiseConvFilterGrad; depthwiseConvFilterGrad(dev_ctx, transformed_input, transformed_output_grad, strides, paddings, dilations, filter_grad); } } } }; } // namespace operators } // namespace paddle