/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/sparse/pool_kernel.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_meta.h" #include "paddle/phi/core/visit_type.h" #include "paddle/phi/kernels/funcs/pooling.h" #include "paddle/phi/kernels/funcs/sparse/convolution.h" #include "paddle/phi/kernels/sparse/cpu/conv.h" namespace phi { namespace sparse { /** * x: (N, D, H, W, C) * kernel: (D, H, W, C, OC) * out: (N, D, H, W, OC) **/ template void MaxPoolCooCPUKernel(const CPUContext& dev_ctx, const SparseCooTensor& x, const std::vector& kernel_sizes, const std::vector& paddings, const std::vector& dilations, const std::vector& strides, SparseCooTensor* out, DenseTensor* rulebook, DenseTensor* counter) { const auto& x_dims = x.dims(); int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2]; const std::vector& real_kernel_sizes = phi::funcs::sparse::PoolResetKernel(kernel_sizes, x_dims[4], x_dims[4]); DDim out_dims = {1, 1, 1, 1, 1}; phi::funcs::sparse::GetOutShape( x_dims, real_kernel_sizes, paddings, dilations, strides, &out_dims); const int in_channels = real_kernel_sizes[3]; std::vector counter_per_kernel(kernel_size, 0); const T* in_features_ptr = x.non_zero_elements().data(); // 1. product rule book ProductRuleBook(dev_ctx, x, real_kernel_sizes, paddings, dilations, strides, out_dims, false, rulebook, counter_per_kernel.data()); UpdateRulebookAndOutIndex( dev_ctx, x, kernel_size, in_channels, out_dims, rulebook, out); int rulebook_len = rulebook->dims()[1]; const IntT* rulebook_ptr = rulebook->data(); counter->Resize({kernel_size}); int* counter_ptr = dev_ctx.template HostAlloc(counter); memcpy(counter_ptr, counter_per_kernel.data(), kernel_size * sizeof(int)); std::vector offsets(kernel_size + 1); phi::funcs::sparse::PrefixSum(counter_ptr, &offsets[0], kernel_size); std::vector out_flags(out->nnz(), false); // 2. max pool T* out_features_ptr = out->mutable_non_zero_elements()->data(); phi::funcs::MaxPool max_pool_functor; for (int i = 0; i < kernel_size; i++) { for (int j = 0; j < counter_ptr[i]; j++) { IntT in_i = rulebook_ptr[rulebook_len + offsets[i] + j]; IntT out_i = rulebook_ptr[rulebook_len * 2 + offsets[i] + j]; if (!out_flags[out_i]) { out_flags[out_i] = true; memcpy(&out_features_ptr[out_i * in_channels], &in_features_ptr[in_i * in_channels], in_channels * sizeof(T)); } else { for (int c = 0; c < in_channels; c++) { max_pool_functor.compute(in_features_ptr[in_i * in_channels + c], &out_features_ptr[out_i * in_channels + c]); } } } } } template void MaxPoolCooKernel(const Context& dev_ctx, const SparseCooTensor& x, const std::vector& kernel_sizes, const std::vector& paddings, const std::vector& dilations, const std::vector& strides, SparseCooTensor* out, DenseTensor* rulebook, DenseTensor* counter) { PD_VISIT_BASE_INTEGRAL_TYPES( x.non_zero_indices().dtype(), "MaxPoolCooCPUKernel", ([&] { MaxPoolCooCPUKernel(dev_ctx, x, kernel_sizes, paddings, dilations, strides, out, rulebook, counter); })); } } // namespace sparse } // namespace phi PD_REGISTER_KERNEL(maxpool_coo, CPU, ALL_LAYOUT, phi::sparse::MaxPoolCooKernel, float, double) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); }