# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.fluid as fluid import numpy as np import unittest from op_test import OpTest class TestBCELoss(unittest.TestCase): def test_BCELoss(self): input_np = np.random.random(size=(20, 30)).astype(np.float64) label_np = np.random.random(size=(20, 30)).astype(np.float64) prog = fluid.Program() startup_prog = fluid.Program() places = [fluid.CPUPlace()] if fluid.core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) reductions = ['sum', 'mean', 'none'] for place in places: for red in reductions: with fluid.program_guard(prog, startup_prog): input = fluid.data( name='input', shape=[None, 30], dtype='float64') label = fluid.data( name='label', shape=[None, 30], dtype='float64') bce_loss = paddle.nn.loss.BCELoss(reduction=red) res = bce_loss(input, label) exe = fluid.Executor(place) static_result = exe.run( prog, feed={"input": input_np, "label": label_np}, fetch_list=[res]) with fluid.dygraph.guard(): bce_loss = paddle.nn.loss.BCELoss(reduction=red) dy_res = bce_loss( fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_result = dy_res.numpy() expected = -1 * (label_np * np.log(input_np) + (1. - label_np) * np.log(1. - input_np)) if red == 'mean': expected = np.mean(expected) elif red == 'sum': expected = np.sum(expected) else: expected = expected self.assertTrue(np.allclose(static_result, expected)) self.assertTrue(np.allclose(static_result, dy_result)) self.assertTrue(np.allclose(dy_result, expected)) def test_BCELoss_weight(self): input_np = np.random.random(size=(20, 30)).astype(np.float64) label_np = np.random.random(size=(20, 30)).astype(np.float64) weight_np = np.random.random(size=(20, 30)).astype(np.float64) prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.data(name='input', shape=[None, 30], dtype='float64') label = fluid.data(name='label', shape=[None, 30], dtype='float64') weight = fluid.data( name='weight', shape=[None, 30], dtype='float64') bce_loss = paddle.nn.loss.BCELoss(weight=weight) res = bce_loss(input, label) exe = fluid.Executor(place) static_result = exe.run(prog, feed={ "input": input_np, "label": label_np, "weight": weight_np }, fetch_list=[res]) with fluid.dygraph.guard(): bce_loss = paddle.nn.loss.BCELoss( weight=fluid.dygraph.to_variable(weight_np)) dy_res = bce_loss( fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_result = dy_res.numpy() expected = np.mean(-1 * weight_np * (label_np * np.log(input_np) + (1. - label_np) * np.log(1. - input_np))) self.assertTrue(np.allclose(static_result, expected)) self.assertTrue(np.allclose(static_result, dy_result)) self.assertTrue(np.allclose(dy_result, expected)) def bce_loss(input, label): return -1 * (label * np.log(input) + (1. - label) * np.log(1. - input)) class TestBceLossOp(OpTest): def setUp(self): self.init_test_case() self.op_type = "bce_loss" input_np = np.random.uniform(0.1, 0.8, self.shape).astype("float64") label_np = np.random.randint(0, 2, self.shape).astype("float64") output_np = bce_loss(input_np, label_np) self.inputs = {'X': input_np, 'Label': label_np} self.outputs = {'Out': output_np} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def init_test_case(self): self.shape = [10, 10] if __name__ == "__main__": unittest.main()