/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/math_function.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; using LoD = framework::LoD; template void call_gemm(const math::BlasT& blas, const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const T alpha, const T* A, const T* B, const T beta, T* C) { int lda = (TransA == CblasNoTrans) ? K : M; int ldb = (TransB == CblasNoTrans) ? N : K; blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N); } template void call_gemm(const framework::ExecutionContext& ctx, const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const T alpha, const T* A, const T* B, const T beta, T* C) { int lda = (TransA == CblasNoTrans) ? K : M; int ldb = (TransB == CblasNoTrans) ? N : K; auto blas = math::GetBlas(ctx); blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N); } template void call_gemm_with_lda(const math::BlasT& blas, const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const T alpha, const T* A, const T* B, const T beta, T* C, int lda) { int ldb = (TransB == CblasNoTrans) ? N : K; blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N); } template void call_gemm_batched(const framework::ExecutionContext& ctx, const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const T alpha, const T** A, const T** B, const T beta, T** C, const int batch) { for (int i = 0; i < batch; ++i) { call_gemm(ctx, TransA, TransB, M, N, K, alpha, A[i], B[i], beta, C[i]); } } #define __m256x __m256 static const unsigned int AVX_STEP_SIZE = 8; static const unsigned int AVX_CUT_LEN_MASK = 7U; #define _mm256_mul_px _mm256_mul_ps #define _mm256_add_px _mm256_add_ps #define _mm256_load_px _mm256_loadu_ps #define _mm256_store_px _mm256_storeu_ps #define _mm256_broadcast_sx _mm256_broadcast_ss template inline void avx_axpy(const T* x, T* y, size_t len, const T alpha) { unsigned int jjj, lll; jjj = lll = 0; lll = len & ~AVX_CUT_LEN_MASK; __m256x mm_alpha = _mm256_broadcast_sx(&alpha); for (jjj = 0; jjj < lll; jjj += AVX_STEP_SIZE) { _mm256_store_px( y + jjj, _mm256_add_px(_mm256_load_px(y + jjj), _mm256_mul_px(mm_alpha, _mm256_load_px(x + jjj)))); } for (; jjj < len; jjj++) { y[jjj] += alpha * x[jjj]; } } template inline void avx_axpy_noadd(const T* x, T* y, size_t len, const T alpha) { unsigned int jjj, lll; jjj = lll = 0; lll = len & ~AVX_CUT_LEN_MASK; __m256x mm_alpha = _mm256_broadcast_sx(&alpha); for (jjj = 0; jjj < lll; jjj += AVX_STEP_SIZE) { _mm256_store_px(y + jjj, _mm256_mul_px(mm_alpha, _mm256_load_px(x + jjj))); } for (; jjj < len; jjj++) { y[jjj] = alpha * x[jjj]; } } } // namespace operators } // namespace paddle