/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/legacy/trainer/Trainer.h" #include #include using namespace paddle; // NOLINT using namespace std; // NOLINT static const string& configFile = "/legacy/trainer/tests/sample_trainer_config.conf"; DECLARE_int32(gpu_id); DECLARE_bool(use_gpu); DECLARE_string(config); DECLARE_string(config_args); struct comData { vector outArgs; vector parameters; }; void calcGradient(bool useGpu, comData& Data) { FLAGS_use_gpu = useGpu; FLAGS_config = configFile; *ThreadLocalRand::getSeed() = 0; srand(0); Trainer trainer; trainer.init(TrainerConfigHelper::createFromFlagConfig()); Data.parameters = trainer.getGradientMachine()->getParameters(); DataBatch dataBatch; int32_t batchSize = trainer.getConfig().opt_config().batch_size(); trainer.getDataProvider()->setSkipShuffle(); trainer.getDataProvider()->getNextBatch(batchSize, &dataBatch); CHECK(dataBatch.getSize()) << "No data from data provider"; vector& inArgs = dataBatch.getStreams(); trainer.getGradientMachine()->start(); for (int i = 0; i < 2; ++i) { trainer.getGradientMachine()->forwardBackward( inArgs, &Data.outArgs, PASS_TRAIN); } trainer.getGradientMachine()->finish(); } void compareGradient(comData& comDataCpu, comData& comDataGpu); TEST(Trainer, create) { int devCount = 0; devCount = hl_get_device_count(); FLAGS_config_args = "drop_rate=0"; comData comDataCpu; calcGradient(false, comDataCpu); LOG(INFO) << "Cpu is completed"; { LOG(INFO) << "Test GPU"; comData comData; calcGradient(true, comData); compareGradient(comDataCpu, comData); LOG(INFO) << "Gpu is completed"; } { LOG(INFO) << "Test test multi gpu"; comData comData; FLAGS_trainer_count = devCount; calcGradient(true, comData); compareGradient(comDataCpu, comData); LOG(INFO) << "Gpu4 is completed"; } { LOG(INFO) << "Test use_sparse_update=true"; comData comData; calcGradient(false, comData); compareGradient(comDataCpu, comData); LOG(INFO) << "Cpu4 is completed"; } } double checkBuffer(real* A, real* B, size_t len) { #ifdef PADDLE_TYPE_DOUBLE double precision = 1e-7; #else double precision = 2e-3; #endif int nNum = 0; double maxE = 0; for (size_t i = 0; i < len; ++i) { double e = fabs(A[i] - B[i]); maxE = std::max(e, maxE); nNum += e > precision * fabs(A[i]); } EXPECT_EQ(0, nNum); return maxE; } void compareGradient(comData& comDataCpu, comData& comDataGpu) { /*compare outArgs*/ vector outArgs1 = comDataCpu.outArgs; vector outArgs2 = comDataGpu.outArgs; CpuMatrix out1(outArgs1[0].value->getHeight(), outArgs1[0].value->getWidth()); CpuMatrix out2(outArgs2[0].value->getHeight(), outArgs2[0].value->getWidth()); out1.copyFrom(*outArgs1[0].value); out2.copyFrom(*outArgs2[0].value); checkBuffer(out1.getData(), out2.getData(), out1.getElementCnt()); /*compare parameters*/ vector& parameters1 = comDataCpu.parameters; vector& parameters2 = comDataGpu.parameters; for (size_t i = 0; i < parameters1.size(); ++i) { ParameterPtr parameter1, parameter2; parameter1 = parameters1[i]; parameter2 = parameters2[i]; /*compare parameters value*/ CpuVector para1(parameter1->getSize()); CpuVector para2(parameter2->getSize()); para1.copyFrom(*parameter1->getBuf(PARAMETER_VALUE)); para2.copyFrom(*parameter2->getBuf(PARAMETER_VALUE)); checkBuffer(para1.getData(), para2.getData(), para1.getSize()); /*compare parameters grad*/ CpuVector cpuGrad1(*parameter1->getBuf(PARAMETER_GRADIENT)); CpuVector cpuGrad2(*parameter2->getBuf(PARAMETER_GRADIENT)); double e = checkBuffer(cpuGrad1.getData(), cpuGrad2.getData(), cpuGrad1.getSize()); LOG(INFO) << parameter1->getName() << " max error=" << e; } } int main(int argc, char** argv) { #ifndef PADDLE_WITH_CUDA exit(0); #endif paddle::initMain(argc, argv); testing::InitGoogleTest(&argc, argv); initPython(argc, argv); int ret = RUN_ALL_TESTS(); exit(ret); }