# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.framework import Program, program_guard class TestOneHotOp(OpTest): def setUp(self): self.op_type = 'one_hot' depth = 10 depth_np = np.array(10).astype('int32') dimension = 12 x_lod = [[4, 1, 3, 3]] x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) out = np.zeros(shape=(np.product(x.shape[:-1]), depth)).astype( 'float32' ) for i in range(np.product(x.shape)): out[i, x[i]] = 1.0 self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np} self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)} self.outputs = {'Out': (out, x_lod)} def test_check_output(self): self.check_output(check_dygraph=False) class TestOneHotOp_attr(OpTest): def setUp(self): self.op_type = 'one_hot' depth = 10 dimension = 12 x_lod = [[4, 1, 3, 3]] x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) out = np.zeros(shape=(np.product(x.shape[:-1]), depth)).astype( 'float32' ) for i in range(np.product(x.shape)): out[i, x[i]] = 1.0 self.inputs = {'X': (x, x_lod)} self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth} self.outputs = {'Out': (out, x_lod)} def test_check_output(self): self.check_output(check_dygraph=False) class TestOneHotOp_default_dtype(OpTest): def setUp(self): self.op_type = 'one_hot' depth = 10 depth_np = np.array(10).astype('int32') dimension = 12 x_lod = [[4, 1, 3, 3]] x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) out = np.zeros(shape=(np.product(x.shape[:-1]), depth)).astype( 'float32' ) for i in range(np.product(x.shape)): out[i, x[i]] = 1.0 self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np} self.attrs = {} self.outputs = {'Out': (out, x_lod)} def test_check_output(self): self.check_output(check_dygraph=False) class TestOneHotOp_default_dtype_attr(OpTest): def setUp(self): self.op_type = 'one_hot' depth = 10 dimension = 12 x_lod = [[4, 1, 3, 3]] x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) out = np.zeros(shape=(np.product(x.shape[:-1]), depth)).astype( 'float32' ) for i in range(np.product(x.shape)): out[i, x[i]] = 1.0 self.inputs = {'X': (x, x_lod)} self.attrs = {'depth': depth} self.outputs = {'Out': (out, x_lod)} def test_check_output(self): self.check_output(check_dygraph=False) class TestOneHotOp_out_of_range(OpTest): def setUp(self): self.op_type = 'one_hot' depth = 10 x_lod = [[4, 1, 3, 3]] x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))] x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) out = np.zeros(shape=(np.product(x.shape[:-1]), depth)).astype( 'float32' ) self.inputs = {'X': (x, x_lod)} self.attrs = {'depth': depth, 'allow_out_of_range': True} self.outputs = {'Out': (out, x_lod)} def test_check_output(self): self.check_output(check_dygraph=False) class TestOneHotOp_exception(unittest.TestCase): def setUp(self): self.op_type = 'one_hot' self.depth = 10 self.place = core.CPUPlace() self.dimension = 12 self.x = core.LoDTensor() x_lod = [[4, 1, 3, 3]] data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))] data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1]) self.x.set(data, self.place) self.x.set_recursive_sequence_lengths(x_lod) def test_check_output(self): program = Program() with program_guard(program): x = fluid.layers.data( name='x', shape=[self.dimension], dtype='float32', lod_level=1 ) block = program.current_block() one_hot_out = block.create_var( name="one_hot_out", type=core.VarDesc.VarType.LOD_TENSOR, dtype='float32', ) block.append_op( type='one_hot', inputs={'X': x}, attrs={'depth': self.depth}, outputs={'Out': one_hot_out}, ) exe = fluid.Executor(self.place) def run(): exe.run( feed={'x': self.x}, fetch_list=[one_hot_out], return_numpy=False, ) self.assertRaises(ValueError, run) class TestOneHotOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # the input must be Variable in_w = np.random.random((4, 1)).astype("int32") self.assertRaises(TypeError, fluid.layers.one_hot, in_w) # the input must be int32 or int 64 in_w2 = fluid.layers.data( name="in_w2", shape=[4, 1], append_batch_size=False, dtype="float32", ) self.assertRaises(TypeError, fluid.layers.one_hot, in_w2) # the depth must be int, long or Variable in_r = fluid.layers.data( name="in_r", shape=[4, 1], append_batch_size=False, dtype="int32", ) depth_w = np.array([4]) self.assertRaises(TypeError, fluid.layers.one_hot, in_r, 4.1) self.assertRaises(TypeError, fluid.layers.one_hot, in_r, depth_w) if __name__ == '__main__': paddle.enable_static() unittest.main()