# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid.core as core from op_test import OpTest class TestMulOp(OpTest): def setUp(self): self.op_type = "mul" self.dtype = np.float32 self.init_dtype_type() self.inputs = { 'X': np.random.random((2, 5)).astype(self.dtype), 'Y': np.random.random((5, 3)).astype(self.dtype) } self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} def init_dtype_type(self): pass def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) class TestMulOp2(OpTest): def setUp(self): self.op_type = "mul" self.dtype = np.float32 self.init_dtype_type() self.inputs = { 'X': np.random.random((3, 4, 4, 3)).astype(self.dtype), 'Y': np.random.random((2, 6, 1, 2, 3)).astype(self.dtype) } self.attrs = { 'x_num_col_dims': 2, 'y_num_col_dims': 2, } result = np.dot(self.inputs['X'].reshape(3 * 4, 4 * 3), self.inputs['Y'].reshape(2 * 6, 1 * 2 * 3)) result = result.reshape(3, 4, 1, 2, 3) self.outputs = {'Out': result} def init_dtype_type(self): pass def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set('X')) def test_check_grad_ignore_y(self): self.check_grad( ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestFP16MulOp1(TestMulOp): def init_dtype_type(self): self.dtype = np.float16 def test_check_output(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-1) def test_check_grad_normal(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ['X', 'Y'], 'Out', max_relative_error=0.5) def test_check_grad_ingore_x(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) def test_check_grad_ingore_y(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestFP16MulOp2(TestMulOp2): def init_dtype_type(self): self.dtype = np.float16 def test_check_output(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=2e-1) def test_check_grad_normal(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ['X', 'Y'], 'Out', max_relative_error=0.9) def test_check_grad_ingore_x(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) def test_check_grad_ingore_y(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ['X'], 'Out', max_relative_error=0.9, no_grad_set=set('Y')) if __name__ == "__main__": unittest.main()