# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys class RoleMakerBase(object): """ RoleMakerBase is a base class for assigning a role to current process in distributed training. A paddle developer can implement RoleMakerBase to design a role maker for worker or pserver assignment. """ def __init__(self): self.role_maker_name_ = "" self.trainer_endpoints_ = [] self.pserver_endpoints_ = [] self.role_is_generated_ = False def _is_worker(self): """ return is_worker() of current process """ raise NotImplementedError("Please implement this method in child class") def _is_server(self): """ return is_server() of current process """ raise NotImplementedError("Please implement this method in child class") def _get_local_ip(self): """ return get local ip """ import socket self.ip_ = socket.gethostbyname(socket.gethostname()) return self.ip_ def _get_trainer_endpoints(self): """ return trainer endpoints """ return self.trainer_endpoints_ def _get_pserver_endpoints(self): """ return pserver endpoints """ return self.pserver_endpoints_ def _generate_role(self): """ generate_role() should be called to identify current process's role """ raise NotImplementedError("Please implement this method in child class") class MPIRoleMaker(RoleMakerBase): """ MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker mpi4py will be used if a developer inherits MPIRoleMaker """ def __init__(self): super(MPIRoleMaker, self).__init__() from mpi4py import MPI self.comm_ = MPI.COMM_WORLD self.MPI = MPI self.ips_ = None def _get_rank(self): """ return rank """ self.rank_ = self.comm_.Get_rank() return self.rank_ def _get_size(self): """ return size """ self.size_ = self.comm_.Get_size() return self.size_ def _all_gather(self, obj): """ all_gather(obj) will call MPI's allgather function """ self._barrier_all() return self.comm_.allgather(obj) def _worker_gather(self, obj): """ worker_gather(obj) will call MPI's allgather function """ if self._is_worker(): self.node_type_comm_.barrier() return self.node_type_comm_.allgather(obj) return None def _barrier_all(self): """ barrier_all() will call MPI's barrier_all function """ self.comm_.barrier() def _get_ips(self): """ collect current distributed job's ip list """ if self.ips_ == None: self.ips_ = self.comm_.allgather(self._get_local_ip()) return self.ips_ def _finalize(self): """ finalize the current MPI instance. """ self.comm_.finalize() class MPISymetricRoleMaker(MPIRoleMaker): """ MPISymetricRoleMaker is designed for worker and server assignment under MPI. Typically, a worker and a server node will be appointed on each physical node. This role maker can be only used under MPI. """ def __init__(self): super(MPISymetricRoleMaker, self).__init__() self.node_type_ = None self.proc_per_node_ = 2 def _check_role_generation(self): if not self.role_is_generated_: sys.stderr.write("generate_role() should be called first") sys.exit(-1) return False return True def _is_first_worker(self): """ return whether current process is the first worker assigned by role maker """ if self._check_role_generation(): return self._is_worker() and 0 == self._worker_index() return False def _is_worker(self): """ return whether current process is worker assigned by role maker """ if self._check_role_generation(): return self.node_type_ == 1 return False def _is_server(self): """ return whether current process is server assigned by role maker """ if self._check_role_generation(): return self.node_type_ == 0 return False def _worker_num(self): """ return the current number of worker """ if self._check_role_generation(): if self._is_worker(): return self._get_size() / 2 return 0 def _server_num(self): """ return the current number of server """ if self._check_role_generation(): if self._is_server(): return self._get_size() / 2 return 0 def _worker_index(self): """ return the index of worker """ if self._check_role_generation(): return self.rank_ / self.proc_per_node_ return 0 def _server_index(self): """ return the index of server """ if self._check_role_generation(): return self.rank_ / self.proc_per_node_ return 0 def _barrier_worker(self): """ barrier all workers in current distributed job """ if self._check_role_generation(): if self._is_worker(): self.node_type_comm_.barrier() def _barrier_server(self): """ barrier all servers in current distributed job """ if self._check_role_generation(): if self._is_server(): self.node_type_comm_.barrier() def _generate_role(self): """ generate currently process's role """ if not self.role_is_generated_: # TODO(guru4elephant): only allow to be called once self.trainer_endpoints_ = self._get_ips() self.pserver_endpoints_ = self._get_ips() if 0 == self._get_rank() % self.proc_per_node_ % 2: self.node_type_ = 0 else: self.node_type_ = 1 self.node_type_comm_ = self.comm_.Split(self.node_type_) self.role_is_generated_ = True