// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/multiclass_nms3_kernel.h" #include "paddle/fluid/operators/detection/gpc.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" namespace phi { using gpc::gpc_free_polygon; using gpc::gpc_polygon_clip; template class Point_ { public: // default constructor Point_() {} Point_(T _x, T _y) {} Point_(const Point_& pt) {} Point_& operator=(const Point_& pt); // conversion to another data type // template operator Point_<_T>() const; // conversion to the old-style C structures // operator Vec() const; // checks whether the point is inside the specified rectangle // bool inside(const Rect_& r) const; T x; //!< x coordinate of the point T y; //!< y coordinate of the point }; template void Array2PointVec(const T* box, const size_t box_size, std::vector>* vec) { size_t pts_num = box_size / 2; (*vec).resize(pts_num); for (size_t i = 0; i < pts_num; i++) { (*vec).at(i).x = box[2 * i]; (*vec).at(i).y = box[2 * i + 1]; } } template void Array2Poly(const T* box, const size_t box_size, gpc::gpc_polygon* poly) { size_t pts_num = box_size / 2; (*poly).num_contours = 1; (*poly).hole = reinterpret_cast(malloc(sizeof(int))); (*poly).hole[0] = 0; (*poly).contour = (gpc::gpc_vertex_list*)malloc(sizeof(gpc::gpc_vertex_list)); (*poly).contour->num_vertices = pts_num; (*poly).contour->vertex = (gpc::gpc_vertex*)malloc(sizeof(gpc::gpc_vertex) * pts_num); for (size_t i = 0; i < pts_num; ++i) { (*poly).contour->vertex[i].x = box[2 * i]; (*poly).contour->vertex[i].y = box[2 * i + 1]; } } template void PointVec2Poly(const std::vector>& vec, gpc::gpc_polygon* poly) { int pts_num = vec.size(); (*poly).num_contours = 1; (*poly).hole = reinterpret_cast(malloc(sizeof(int))); (*poly).hole[0] = 0; (*poly).contour = (gpc::gpc_vertex_list*)malloc(sizeof(gpc::gpc_vertex_list)); (*poly).contour->num_vertices = pts_num; (*poly).contour->vertex = (gpc::gpc_vertex*)malloc(sizeof(gpc::gpc_vertex) * pts_num); for (size_t i = 0; i < pts_num; ++i) { (*poly).contour->vertex[i].x = vec[i].x; (*poly).contour->vertex[i].y = vec[i].y; } } template void Poly2PointVec(const gpc::gpc_vertex_list& contour, std::vector>* vec) { int pts_num = contour.num_vertices; (*vec).resize(pts_num); for (int i = 0; i < pts_num; i++) { (*vec).at(i).x = contour.vertex[i].x; (*vec).at(i).y = contour.vertex[i].y; } } template T GetContourArea(const std::vector>& vec) { size_t pts_num = vec.size(); if (pts_num < 3) return T(0.); T area = T(0.); for (size_t i = 0; i < pts_num; ++i) { area += vec[i].x * vec[(i + 1) % pts_num].y - vec[i].y * vec[(i + 1) % pts_num].x; } return std::fabs(area / 2.0); } template T PolyArea(const T* box, const size_t box_size, const bool normalized) { // If coordinate values are is invalid // if area size <= 0, return 0. std::vector> vec; Array2PointVec(box, box_size, &vec); return GetContourArea(vec); } template T PolyOverlapArea(const T* box1, const T* box2, const size_t box_size, const bool normalized) { gpc::gpc_polygon poly1; gpc::gpc_polygon poly2; Array2Poly(box1, box_size, &poly1); Array2Poly(box2, box_size, &poly2); gpc::gpc_polygon respoly; gpc::gpc_op op = gpc::GPC_INT; gpc::gpc_polygon_clip(op, &poly2, &poly1, &respoly); T inter_area = T(0.); int contour_num = respoly.num_contours; for (int i = 0; i < contour_num; ++i) { std::vector> resvec; Poly2PointVec(respoly.contour[i], &resvec); // inter_area += std::fabs(cv::contourArea(resvec)) + 0.5f * // (cv::arcLength(resvec, true)); inter_area += GetContourArea(resvec); } gpc::gpc_free_polygon(&poly1); gpc::gpc_free_polygon(&poly2); gpc::gpc_free_polygon(&respoly); return inter_area; } template bool SortScorePairDescend(const std::pair& pair1, const std::pair& pair2) { return pair1.first > pair2.first; } template static inline void GetMaxScoreIndex( const std::vector& scores, const T threshold, int top_k, std::vector>* sorted_indices) { for (size_t i = 0; i < scores.size(); ++i) { if (scores[i] > threshold) { sorted_indices->push_back(std::make_pair(scores[i], i)); } } // Sort the score pair according to the scores in descending order std::stable_sort(sorted_indices->begin(), sorted_indices->end(), SortScorePairDescend); // Keep top_k scores if needed. if (top_k > -1 && top_k < static_cast(sorted_indices->size())) { sorted_indices->resize(top_k); } } template static inline T BBoxArea(const T* box, const bool normalized) { if (box[2] < box[0] || box[3] < box[1]) { // If coordinate values are is invalid // (e.g. xmax < xmin or ymax < ymin), return 0. return static_cast(0.); } else { const T w = box[2] - box[0]; const T h = box[3] - box[1]; if (normalized) { return w * h; } else { // If coordinate values are not within range [0, 1]. return (w + 1) * (h + 1); } } } template static inline T JaccardOverlap(const T* box1, const T* box2, const bool normalized) { if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] || box2[3] < box1[1]) { return static_cast(0.); } else { const T inter_xmin = std::max(box1[0], box2[0]); const T inter_ymin = std::max(box1[1], box2[1]); const T inter_xmax = std::min(box1[2], box2[2]); const T inter_ymax = std::min(box1[3], box2[3]); T norm = normalized ? static_cast(0.) : static_cast(1.); T inter_w = inter_xmax - inter_xmin + norm; T inter_h = inter_ymax - inter_ymin + norm; const T inter_area = inter_w * inter_h; const T bbox1_area = BBoxArea(box1, normalized); const T bbox2_area = BBoxArea(box2, normalized); return inter_area / (bbox1_area + bbox2_area - inter_area); } } template T PolyIoU(const T* box1, const T* box2, const size_t box_size, const bool normalized) { T bbox1_area = PolyArea(box1, box_size, normalized); T bbox2_area = PolyArea(box2, box_size, normalized); T inter_area = PolyOverlapArea(box1, box2, box_size, normalized); if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) { // If coordinate values are invalid // if area size <= 0, return 0. return T(0.); } else { return inter_area / (bbox1_area + bbox2_area - inter_area); } } inline std::vector GetNmsLodFromRoisNum(const DenseTensor* rois_num) { std::vector rois_lod; auto* rois_num_data = rois_num->data(); rois_lod.push_back(static_cast(0)); for (int i = 0; i < rois_num->numel(); ++i) { rois_lod.push_back(rois_lod.back() + static_cast(rois_num_data[i])); } return rois_lod; } template void SliceOneClass(const Context& ctx, const DenseTensor& items, const int class_id, DenseTensor* one_class_item) { // T* item_data = one_class_item->mutable_data(ctx.GetPlace()); T* item_data = ctx.template Alloc(one_class_item); const T* items_data = items.data(); const int64_t num_item = items.dims()[0]; const int class_num = items.dims()[1]; if (items.dims().size() == 3) { int item_size = items.dims()[2]; for (int i = 0; i < num_item; ++i) { std::memcpy(item_data + i * item_size, items_data + i * class_num * item_size + class_id * item_size, sizeof(T) * item_size); } } else { for (int i = 0; i < num_item; ++i) { item_data[i] = items_data[i * class_num + class_id]; } } } template void NMSFast(const DenseTensor& bbox, const DenseTensor& scores, const T score_threshold, const T nms_threshold, const T eta, const int64_t top_k, std::vector* selected_indices, const bool normalized) { // The total boxes for each instance. int64_t num_boxes = bbox.dims()[0]; // 4: [xmin ymin xmax ymax] // 8: [x1 y1 x2 y2 x3 y3 x4 y4] // 16, 24, or 32: [x1 y1 x2 y2 ... xn yn], n = 8, 12 or 16 int64_t box_size = bbox.dims()[1]; std::vector scores_data(num_boxes); std::copy_n(scores.data(), num_boxes, scores_data.begin()); std::vector> sorted_indices; GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices); selected_indices->clear(); T adaptive_threshold = nms_threshold; const T* bbox_data = bbox.data(); while (sorted_indices.size() != 0) { const int idx = sorted_indices.front().second; bool keep = true; for (size_t k = 0; k < selected_indices->size(); ++k) { if (keep) { const int kept_idx = (*selected_indices)[k]; T overlap = T(0.); // 4: [xmin ymin xmax ymax] if (box_size == 4) { overlap = JaccardOverlap(bbox_data + idx * box_size, bbox_data + kept_idx * box_size, normalized); } // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32 if (box_size == 8 || box_size == 16 || box_size == 24 || box_size == 32) { overlap = PolyIoU(bbox_data + idx * box_size, bbox_data + kept_idx * box_size, box_size, normalized); } keep = overlap <= adaptive_threshold; } else { break; } } if (keep) { selected_indices->push_back(idx); } sorted_indices.erase(sorted_indices.begin()); if (keep && eta < 1 && adaptive_threshold > 0.5) { adaptive_threshold *= eta; } } } template void MultiClassNMS(const Context& ctx, const DenseTensor& scores, const DenseTensor& bboxes, const int scores_size, float scorethreshold, int nms_top_k, int keep_top_k, float nmsthreshold, bool normalized, float nmseta, int background_label, std::map>* indices, int* num_nmsed_out) { T nms_threshold = static_cast(nmsthreshold); T nms_eta = static_cast(nmseta); T score_threshold = static_cast(scorethreshold); int num_det = 0; int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1]; DenseTensor bbox_slice, score_slice; for (int64_t c = 0; c < class_num; ++c) { if (c == background_label) continue; if (scores_size == 3) { score_slice = scores.Slice(c, c + 1); bbox_slice = bboxes; } else { score_slice.Resize({scores.dims()[0], 1}); bbox_slice.Resize({scores.dims()[0], 4}); SliceOneClass(ctx, scores, c, &score_slice); SliceOneClass(ctx, bboxes, c, &bbox_slice); } NMSFast(bbox_slice, score_slice, score_threshold, nms_threshold, nms_eta, nms_top_k, &((*indices)[c]), normalized); if (scores_size == 2) { std::stable_sort((*indices)[c].begin(), (*indices)[c].end()); } num_det += (*indices)[c].size(); } *num_nmsed_out = num_det; const T* scores_data = scores.data(); if (keep_top_k > -1 && num_det > keep_top_k) { const T* sdata; std::vector>> score_index_pairs; for (const auto& it : *indices) { int label = it.first; if (scores_size == 3) { sdata = scores_data + label * scores.dims()[1]; } else { score_slice.Resize({scores.dims()[0], 1}); SliceOneClass(ctx, scores, label, &score_slice); sdata = score_slice.data(); } const std::vector& label_indices = it.second; for (size_t j = 0; j < label_indices.size(); ++j) { int idx = label_indices[j]; score_index_pairs.push_back( std::make_pair(sdata[idx], std::make_pair(label, idx))); } } // Keep top k results per image. std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(), SortScorePairDescend>); score_index_pairs.resize(keep_top_k); // Store the new indices. std::map> new_indices; for (size_t j = 0; j < score_index_pairs.size(); ++j) { int label = score_index_pairs[j].second.first; int idx = score_index_pairs[j].second.second; new_indices[label].push_back(idx); } if (scores_size == 2) { for (const auto& it : new_indices) { int label = it.first; std::stable_sort(new_indices[label].begin(), new_indices[label].end()); } } new_indices.swap(*indices); *num_nmsed_out = keep_top_k; } } template void MultiClassOutput(const Context& ctx, const DenseTensor& scores, const DenseTensor& bboxes, const std::map>& selected_indices, const int scores_size, DenseTensor* out, int* oindices = nullptr, const int offset = 0) { int64_t class_num = scores.dims()[1]; int64_t predict_dim = scores.dims()[1]; int64_t box_size = bboxes.dims()[1]; if (scores_size == 2) { box_size = bboxes.dims()[2]; } int64_t out_dim = box_size + 2; auto* scores_data = scores.data(); auto* bboxes_data = bboxes.data(); auto* odata = out->data(); const T* sdata; DenseTensor bbox; bbox.Resize({scores.dims()[0], box_size}); int count = 0; for (const auto& it : selected_indices) { int label = it.first; const std::vector& indices = it.second; if (scores_size == 2) { SliceOneClass(ctx, bboxes, label, &bbox); } else { sdata = scores_data + label * predict_dim; } for (size_t j = 0; j < indices.size(); ++j) { int idx = indices[j]; odata[count * out_dim] = label; // label const T* bdata; if (scores_size == 3) { bdata = bboxes_data + idx * box_size; odata[count * out_dim + 1] = sdata[idx]; // score if (oindices != nullptr) { oindices[count] = offset + idx; } } else { bdata = bbox.data() + idx * box_size; odata[count * out_dim + 1] = *(scores_data + idx * class_num + label); if (oindices != nullptr) { oindices[count] = offset + idx * class_num + label; } } // xmin, ymin, xmax, ymax or multi-points coordinates std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T)); count++; } } } template void MultiClassNMSKernel(const Context& ctx, const DenseTensor& bboxes, const DenseTensor& scores, const paddle::optional& rois_num, float score_threshold, int nms_top_k, int keep_top_k, float nms_threshold, bool normalized, float nms_eta, int background_label, DenseTensor* out, DenseTensor* index, DenseTensor* nms_rois_num) { bool return_index = index != nullptr; bool has_roisnum = rois_num.get_ptr() != nullptr; auto score_dims = scores.dims(); auto score_size = score_dims.size(); std::vector>> all_indices; std::vector batch_starts = {0}; int64_t batch_size = score_dims[0]; int64_t box_dim = bboxes.dims()[2]; int64_t out_dim = box_dim + 2; int num_nmsed_out = 0; DenseTensor boxes_slice, scores_slice; int n = 0; if (has_roisnum) { n = score_size == 3 ? batch_size : rois_num.get_ptr()->numel(); } else { n = score_size == 3 ? batch_size : bboxes.lod().back().size() - 1; } for (int i = 0; i < n; ++i) { std::map> indices; if (score_size == 3) { scores_slice = scores.Slice(i, i + 1); scores_slice.Resize({score_dims[1], score_dims[2]}); boxes_slice = bboxes.Slice(i, i + 1); boxes_slice.Resize({score_dims[2], box_dim}); } else { std::vector boxes_lod; if (has_roisnum) { boxes_lod = GetNmsLodFromRoisNum(rois_num.get_ptr()); } else { boxes_lod = bboxes.lod().back(); } if (boxes_lod[i] == boxes_lod[i + 1]) { all_indices.push_back(indices); batch_starts.push_back(batch_starts.back()); continue; } scores_slice = scores.Slice(boxes_lod[i], boxes_lod[i + 1]); boxes_slice = bboxes.Slice(boxes_lod[i], boxes_lod[i + 1]); } MultiClassNMS(ctx, scores_slice, boxes_slice, score_size, score_threshold, nms_top_k, keep_top_k, nms_threshold, normalized, nms_eta, background_label, &indices, &num_nmsed_out); all_indices.push_back(indices); batch_starts.push_back(batch_starts.back() + num_nmsed_out); } int num_kept = batch_starts.back(); if (num_kept == 0) { if (return_index) { out->Resize({0, out_dim}); ctx.template Alloc(out); index->Resize({0, 1}); ctx.template Alloc(index); } else { out->Resize({1, 1}); T* od = ctx.template Alloc(out); od[0] = -1; batch_starts = {0, 1}; } } else { out->Resize({num_kept, out_dim}); ctx.template Alloc(out); int offset = 0; int* oindices = nullptr; for (int i = 0; i < n; ++i) { if (score_size == 3) { scores_slice = scores.Slice(i, i + 1); boxes_slice = bboxes.Slice(i, i + 1); scores_slice.Resize({score_dims[1], score_dims[2]}); boxes_slice.Resize({score_dims[2], box_dim}); if (return_index) { offset = i * score_dims[2]; } } else { std::vector boxes_lod; if (has_roisnum) { boxes_lod = GetNmsLodFromRoisNum(rois_num.get_ptr()); } else { boxes_lod = bboxes.lod().back(); } if (boxes_lod[i] == boxes_lod[i + 1]) continue; scores_slice = scores.Slice(boxes_lod[i], boxes_lod[i + 1]); boxes_slice = bboxes.Slice(boxes_lod[i], boxes_lod[i + 1]); if (return_index) { offset = boxes_lod[i] * score_dims[1]; } } int64_t s = batch_starts[i]; int64_t e = batch_starts[i + 1]; if (e > s) { DenseTensor nout = out->Slice(s, e); if (return_index) { index->Resize({num_kept, 1}); int* output_idx = ctx.template Alloc(index); oindices = output_idx + s; } MultiClassOutput(ctx, scores_slice, boxes_slice, all_indices[i], score_dims.size(), &nout, oindices, offset); } } } if (nms_rois_num != nullptr) { nms_rois_num->Resize({n}); ctx.template Alloc(nms_rois_num); int* num_data = nms_rois_num->data(); for (int i = 1; i <= n; i++) { num_data[i - 1] = batch_starts[i] - batch_starts[i - 1]; } nms_rois_num->Resize({n}); } } } // namespace phi PD_REGISTER_KERNEL( multiclass_nms3, CPU, ALL_LAYOUT, phi::MultiClassNMSKernel, float, double) { }