# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import typing import paddle.autograd.utils as tensor_utils import paddle.incubate.autograd.utils as prim_utils from paddle.fluid import framework from paddle.incubate.autograd import primx @framework.static_only def forward_gradients(targets, inputs, input_gradients=None): """Forward mode of automatic differentiation. .. note:: **ONLY available in the static mode and primitive operators.** Args: targets: The target tensor or tensors inputs: The input tensor or tensors input_gradients: The gradient Tensor or Tensors of inputs which has the same shape with inputs, Defaults to None, in this case is equivalent to all ones . Returns: target_gradients (Tensor|Sequence[Tensor]): The gradients for targets. Examples: .. code-block:: python import numpy as np import paddle paddle.enable_static() paddle.incubate.autograd.enable_prim() startup_program = paddle.static.Program() main_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): x = paddle.static.data('x', shape=[1], dtype='float32') y = x * x y_grad = paddle.incubate.autograd.forward_gradients(y, x) paddle.incubate.autograd.prim2orig() exe = paddle.static.Executor() exe.run(startup_program) y_grad = exe.run(main_program, feed={'x': np.array([2.]).astype('float32')}, fetch_list=[y_grad]) print(y_grad) # [array([4.], dtype=float32)] paddle.incubate.autograd.disable_prim() paddle.disable_static() """ if not prim_utils.prim_enabled(): raise RuntimeError('forward_gradients must be running on primitive' 'operators, use enable_prim to turn it on.') if not isinstance(targets, (framework.Variable, typing.Sequence)): raise TypeError(f'Expected targets is Tensor|Sequence[Tesnor], ' f'but got {type(targets)}.') if not isinstance(inputs, (framework.Variable, typing.Sequence)): raise TypeError(f'Expected inputs is Tensor|Sequence[Tesnor], ' f'but got {type(inputs)}.') ys, xs, xs_dot = tensor_utils.as_tensors(targets), tensor_utils.as_tensors( inputs), tensor_utils.as_tensors(input_gradients) block = framework.default_main_program().current_block() if any(x.block != block for x in xs + ys): raise RuntimeError( 'Variable in inputs and targets should exist in current block of ' 'main program.') primx.orig2prim(block) ad = primx.Transform(ys[0].block) _, ys_dot = ad.linearize(xs, ys, xs_dot) return ys_dot[0] if isinstance(targets, framework.Variable) else ys_dot