/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "Layer.h" #include "MultinomialSampler.h" #include "paddle/legacy/math/MathFunctions.h" namespace paddle { /** * Noise-contrastive estimation. * Implements the method in the following paper: * A fast and simple algorithm for training neural probabilistic language * models. * * The config file api is nce_layer. */ class NCELayer : public Layer { int numClasses_; /// number of input layer besides labelLayer and weightLayer int numInputs_; LayerPtr labelLayer_; /// weight layer, can be None LayerPtr weightLayer_; WeightList weights_; std::unique_ptr biases_; std::unique_ptr sampler_; std::uniform_int_distribution rand_; struct Sample { int sampleId; int labelId; bool target; real weight; }; std::vector samples_; /// whether samples_ is prepared bool prepared_; Argument sampleOut_; IVectorPtr labelIds_; public: explicit NCELayer(const LayerConfig& config) : Layer(config), numClasses_(config.num_classes()), rand_(0, config.num_classes() - 1), prepared_(false) {} bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) override { /* Initialize the basic parent class */ Layer::init(layerMap, parameterMap); /* initialize the weightList */ size_t i; for (i = 0; i < inputLayers_.size(); i++) { if (!parameters_[i]) break; size_t width = inputLayers_[i]->getSize(); // create a new weight CHECK_EQ(parameters_[i]->getSize(), width * numClasses_); Weight* w = new Weight(numClasses_, width, parameters_[i]); // append the new weight to the list weights_.emplace_back(w); } CHECK_EQ(1U, getSize()); numInputs_ = i; CHECK_GE(numInputs_, 1) << "Must have at least one input besides label and weight"; CHECK_LT(i, inputLayers_.size()) << "Missing label layer"; labelLayer_ = inputLayers_[i]; if (++i < inputLayers_.size()) { weightLayer_ = inputLayers_[i]; ++i; } CHECK_EQ(i, inputLayers_.size()); /* initialize biases_ */ if (biasParameter_.get() != NULL) { CHECK_EQ(biasParameter_->getSize(), (size_t)numClasses_); biases_.reset(new Weight(1, numClasses_, biasParameter_)); } if (config_.neg_sampling_dist_size()) { CHECK_EQ(numClasses_, config_.neg_sampling_dist_size()); sampler_.reset(MultinomialSampler::create( config_.neg_sampling_dist().data(), numClasses_)); } return true; } void prepareSamples() { CHECK(!useGpu_) << "GPU is not supported"; int batchSize = getInput(*labelLayer_).getBatchSize(); IVectorPtr label = getInput(*labelLayer_).ids; CpuSparseMatrixPtr multiLabel = std::dynamic_pointer_cast( getInput(*labelLayer_).value); CHECK(label || multiLabel) << "The label layer must have ids or NonValueSparseMatrix value"; auto& randEngine = ThreadLocalRandomEngine::get(); samples_.clear(); samples_.reserve(batchSize * (1 + config_.num_neg_samples())); real* weight = weightLayer_ ? getInputValue(*weightLayer_)->getData() : nullptr; for (int i = 0; i < batchSize; ++i) { real w = weight ? weight[i] : 1; if (label) { int* ids = label->getData(); samples_.push_back({i, ids[i], true, w}); } else { const int* cols = multiLabel->getRowCols(i); int n = multiLabel->getColNum(i); for (int j = 0; j < n; ++j) { samples_.push_back({i, cols[j], true, w}); } } for (int j = 0; j < config_.num_neg_samples(); ++j) { int id = sampler_ ? sampler_->gen(randEngine) : rand_(randEngine); samples_.push_back({i, id, false, w}); } } prepared_ = true; } void prefetch() override { prepareSamples(); IVector::resizeOrCreate(labelIds_, samples_.size(), useGpu_); int* ids = labelIds_->getData(); for (size_t i = 0; i < samples_.size(); ++i) { ids[i] = samples_[i].labelId; } for (int i = 0; i < numInputs_; ++i) { auto sparseParam = dynamic_cast(weights_[i]->getW().get()); if (sparseParam) { sparseParam->addRows(labelIds_); } } } void forward(PassType passType) override { Layer::forward(passType); CHECK(!useGpu_) << "GPU is not supported"; if (!prepared_) { if (passType == PASS_GC) { ThreadLocalRandomEngine::get().seed(ThreadLocalRand::getDefaultSeed()); } prepareSamples(); } prepared_ = false; /* malloc memory for the output_ if necessary */ int batchSize = getInputValue(0)->getHeight(); int size = getSize(); resetOutput(batchSize, size); Matrix::resizeOrCreate(sampleOut_.value, 1, samples_.size(), /* trans= */ false, useGpu_); forwardBias(); for (int l = 0; l < numInputs_; ++l) { forwardOneInput(l); } auto status = activation_->forward(sampleOut_); status.check(); forwardCost(); } void backward(const UpdateCallback& callback) override { Matrix::resizeOrCreate(sampleOut_.grad, 1, samples_.size(), /* trans= */ false, useGpu_); backwardCost(); auto status = activation_->backward(sampleOut_); status.check(); if (biases_->getWGrad()) { backwardBias(callback); } for (int l = 0; l < numInputs_; ++l) { backwardOneInput(l, callback); } } void forwardBias() { if (!biases_) { sampleOut_.value->zeroMem(); } else { real* bias = biases_->getW()->getData(); real* sampleOut = sampleOut_.value->getData(); for (size_t i = 0; i < samples_.size(); ++i) { sampleOut[i] = bias[samples_[i].labelId]; } } } void backwardBias(const UpdateCallback& callback) { if (!biases_) return; real* bias = biases_->getWGrad()->getData(); real* sampleOut = sampleOut_.grad->getData(); for (size_t i = 0; i < samples_.size(); ++i) { bias[samples_[i].labelId] += sampleOut[i]; } biases_->incUpdate(callback); } void forwardOneInput(int layerId) { const MatrixPtr& inputMat = getInputValue(layerId); const MatrixPtr& weightMat = weights_[layerId]->getW(); int dim = inputMat->getWidth(); real* sampleOut = sampleOut_.value->getData(); for (size_t i = 0; i < samples_.size(); ++i) { sampleOut[i] += dotProduct(dim, inputMat->getRowBuf(samples_[i].sampleId), weightMat->getRowBuf(samples_[i].labelId)); } } void backwardOneInput(int layerId, const UpdateCallback& callback) { const MatrixPtr& inputMat = getInputValue(layerId); const MatrixPtr& inputGradMat = getInputGrad(layerId); const MatrixPtr& weightMat = weights_[layerId]->getW(); const MatrixPtr& weightGradMat = weights_[layerId]->getWGrad(); int dim = inputMat->getWidth(); real* sampleGrad = sampleOut_.grad->getData(); if (weightGradMat) { for (size_t i = 0; i < samples_.size(); ++i) { axpy(dim, sampleGrad[i], inputMat->getRowBuf(samples_[i].sampleId), weightGradMat->getRowBuf(samples_[i].labelId)); } weights_[layerId]->incUpdate(callback); } if (inputGradMat) { for (size_t i = 0; i < samples_.size(); ++i) { axpy(dim, sampleGrad[i], weightMat->getRowBuf(samples_[i].labelId), inputGradMat->getRowBuf(samples_[i].sampleId)); } } } void forwardCost() { real* out = output_.value->getData(); real* sampleOut = sampleOut_.value->getData(); real b = 1. / numClasses_ * config_.num_neg_samples(); for (size_t i = 0; i < samples_.size(); ++i) { real o = sampleOut[i]; if (sampler_) { b = config_.num_neg_samples() * config_.neg_sampling_dist(samples_[i].labelId); } real cost = samples_[i].target ? -log(o / (o + b)) : -log(b / (o + b)); out[samples_[i].sampleId] += samples_[i].weight * cost; } } void backwardCost() { real* sampleOut = sampleOut_.value->getData(); real* sampleGrad = sampleOut_.grad->getData(); real b = 1. / numClasses_ * config_.num_neg_samples(); for (size_t i = 0; i < samples_.size(); ++i) { real o = sampleOut[i]; if (sampler_) { b = config_.num_neg_samples() * config_.neg_sampling_dist(samples_[i].labelId); } real w = samples_[i].weight; sampleGrad[i] = samples_[i].target ? -w * b / (o * (o + b)) : w / (o + b); } } }; REGISTER_LAYER(nce, NCELayer); } // namespace paddle