// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h" #include #include #include #include #include #include #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph_helper.h" #include "paddle/fluid/framework/ir/graph_pattern_detector.h" #include "paddle/fluid/framework/ir/node.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/var_desc.h" #include "paddle/fluid/inference/io.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/common/layout.h" #include "paddle/phi/core/tensor_meta.h" using namespace paddle::framework; // NOLINT namespace paddle { namespace inference { namespace analysis { namespace { inline std::string SerializeParams(framework::Scope* scope, const std::vector& params) { std::ostringstream os; phi::CPUContext ctx; for (const auto& param : params) { VLOG(3) << "Serialize param: " << param; PADDLE_ENFORCE_NOT_NULL( scope->FindVar(param), platform::errors::NotFound("Block should already have a '%s' variable", param)); auto* tensor = scope->FindVar(param)->GetMutable(); framework::SerializeToStream(os, *tensor, ctx); } return os.str(); } inline void StrToBinary(const std::string& path, const std::string& str) { std::ofstream file(path.c_str(), std::ios::binary); file.write(str.c_str(), str.size()); file.close(); } inline bool NodeVarHasDtype(framework::ir::Node* node) { if (node->IsCtrlVar()) return false; if (node->IsVar() && (node->Var()->GetType() == paddle::framework::proto::VarType::SELECTED_ROWS || node->Var()->GetType() == paddle::framework::proto::VarType::LOD_TENSOR || node->Var()->GetType() == paddle::framework::proto::VarType::LOD_TENSOR_ARRAY || node->Var()->GetType() == paddle::framework::proto::VarType::STRINGS || node->Var()->GetType() == paddle::framework::proto::VarType::VOCAB)) { return true; } return false; } // Return Node* which first appers in block. framework::ir::Node* GetRealNode( const std::vector& graphes, int block_idx, framework::ir::Node* node, std::unordered_map>* vars_in_multi_block_map) { if (vars_in_multi_block_map->count(node->Name())) { int var_origin_block_id = vars_in_multi_block_map->at(node->Name()).second; if (block_idx != var_origin_block_id) { auto graph = graphes[var_origin_block_id]; for (auto nd : graph->Nodes()) { if (nd->Name() == node->Name()) { return nd; } } } } return node; } inline bool VarIsMultiOpsOut( const std::vector& graphes, int block_idx, framework::ir::Node* op_node, std::unordered_map>* vars_in_multi_block_map, const std::vector>& vars_appear_multi_in_one_block) { CHECK_EQ(op_node->IsOp(), true); for (auto* out : op_node->outputs) { if (out->IsCtrlVar()) continue; auto* real_node = GetRealNode(graphes, block_idx, out, vars_in_multi_block_map); if (!real_node->Var()->Persistable() && vars_appear_multi_in_one_block[block_idx].count(out->Name())) { VLOG(2) << out->Name() << " is multi op's out, so we skip convert to fp16"; return true; } } return false; } void SaveMixedModel( framework::ir::Graph* graph, framework::Scope* scope, framework::ProgramDesc* mixed_program_desc, const std::string& mixed_model_file, const std::string& mixed_params_file, phi::DataType mixed_precision, const std::unordered_map>& vars_in_multi_block_map) { paddle::CPUPlace place; auto parameters = scope->LocalVarNames(); std::sort(parameters.begin(), parameters.end()); std::unordered_set weights_should_be_fp32; for (auto* node : graph->Nodes()) { if (!(node->IsVar() && !node->IsCtrlVar())) continue; if (NodeVarHasDtype(node)) { if (node->Var()->Persistable() && node->Var()->GetDataType() == paddle::framework::proto::VarType::FP32) { VLOG(2) << "weights keep to fp32: " << node->Name(); weights_should_be_fp32.insert(node->Name()); } } } for (const auto& param_name : parameters) { auto* var = scope->FindLocalVar(param_name); if (var->IsType() || var->IsType()) { auto* t = var->GetMutable(); if (t->dtype() != phi::DataType::FLOAT32) continue; phi::DenseTensor mixed_tensor; mixed_tensor.Resize(t->dims()); auto* data = t->mutable_data(platform::CPUPlace()); if (mixed_precision == phi::DataType::FLOAT16 && !weights_should_be_fp32.count(param_name)) { mixed_tensor.set_type(paddle::experimental::DataType::FLOAT16); auto* mixed_data = mixed_tensor.mutable_data(platform::CPUPlace()); for (int i = 0; i < t->numel(); i++) { mixed_data[i] = static_cast(data[i]); } t->clear(); paddle::framework::TensorCopySync(mixed_tensor, place, t); } else if (mixed_precision == phi::DataType::BFLOAT16 && !weights_should_be_fp32.count(param_name)) { mixed_tensor.set_type(paddle::experimental::DataType::BFLOAT16); auto* mixed_data = mixed_tensor.mutable_data(platform::CPUPlace()); for (int i = 0; i < t->numel(); i++) { mixed_data[i] = static_cast(data[i]); } t->clear(); paddle::framework::TensorCopySync(mixed_tensor, place, t); } } } StrToBinary(mixed_model_file, mixed_program_desc->Proto()->SerializeAsString()); StrToBinary(mixed_params_file, SerializeParams(scope, parameters)); } bool PhiKernelSupportPrecision( const std::string& op_type, phi::Backend backend, phi::DataType data_type, phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) { auto kernels = phi::KernelFactory::Instance().kernels(); if (kernels.find(op_type) == kernels.end()) { return false; } phi::KernelKey kernel_key(backend, layout, data_type); return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key); } bool GpuKernelSupportPrecision( const std::string& op_type, phi::DataType data_type, phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) { auto phi_op_type = phi::TransToPhiKernelName(op_type); bool res = PhiKernelSupportPrecision( phi_op_type, phi::Backend::GPU, data_type, layout); res |= PhiKernelSupportPrecision( phi_op_type, phi::Backend::GPUDNN, data_type, layout); if (!res) { auto& all_kernels = OperatorWithKernel::AllOpKernels(); auto it = all_kernels.find(op_type); if (it != all_kernels.end()) { for (auto& kern_pair : it->second) { if (platform::is_gpu_place(kern_pair.first.place_) && kern_pair.first.data_type_ == framework::proto::VarType::FP16) { res = true; } } } } return res; } // Just process special cases. bool OutShouldNotConvert(ir::Node* var_node) { auto op_node = var_node->inputs[0]; auto* op_desc = op_node->Op(); // batch_norm's input and output (variance and mean) are the same. if (op_desc->Type() == "batch_norm") { auto vecs = op_desc->Output("MeanOut"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Output("VarianceOut"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Output("SavedMean"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Output("SavedVariance"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } } return false; } void ProcessOutputNode( const std::vector& graphes, int block_idx, ir::Node* var_node, framework::proto::VarType::Type to_type, std::unordered_map>* vars_in_multi_block_map) { auto* real_node = GetRealNode(graphes, block_idx, var_node, vars_in_multi_block_map); if (!NodeVarHasDtype(real_node)) return; auto* out_var = real_node->Var(); if (out_var->GetDataType() == framework::proto::VarType::FP32) { if (OutShouldNotConvert(var_node)) return; out_var->SetDataType(to_type); } VLOG(3) << " out_node name " << var_node->Name() << " data_type " << out_var->GetDataType(); } // Just process special cases for weights conversion. bool WeightsShouldNotConvert(ir::Node* var_node) { auto op_nodes = var_node->outputs; for (auto* op_node : op_nodes) { auto* op_desc = op_node->Op(); // batch_norm op's bias, mean, scale and variance just be float32, so we can // not convert the dtype. if (op_desc->Type() == "batch_norm") { auto vecs = op_desc->Input("Bias"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Input("Mean"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Input("Scale"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Input("Variance"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } } else if (op_desc->Type() == "fused_multi_transformer") { auto vecs = op_desc->Input("LnScale"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Input("LnBias"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Input("FFNLnScale"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } vecs = op_desc->Input("FFNLnBias"); if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) { return true; } } } return false; } inline bool IsFloatVarType(framework::proto::VarType::Type type) { if (type == framework::proto::VarType::FP16 || type == framework::proto::VarType::FP32 || type == framework::proto::VarType::BF16) return true; return false; } void ProcessInputNode( bool support_precision, std::vector graphes, ir::Node* in_node, ir::Node* op_node, int* suffix, framework::BlockDesc* block_desc, std::unordered_map* cast_map, framework::proto::VarType::Type to_type, int block_idx, std::unordered_map>* vars_in_multi_block_map) { auto* real_node = GetRealNode(graphes, block_idx, in_node, vars_in_multi_block_map); if (!NodeVarHasDtype(real_node)) return; auto graph = graphes[block_idx]; bool is_main_block = block_idx == 0; auto* in_var = real_node->Var(); auto in_var_type = in_var->GetDataType(); bool is_in_multi_block = vars_in_multi_block_map->count(in_var->Name()); if (!is_main_block && is_in_multi_block) { in_var_type = vars_in_multi_block_map->at(in_var->Name()).first; } if (support_precision) { if (in_var->Persistable() && in_var_type == framework::proto::VarType::FP32) { if (WeightsShouldNotConvert(in_node)) return; in_var->SetDataType(to_type); in_var_type = to_type; } else if (!in_var->Persistable() && IsFloatVarType(in_var_type) && in_var_type != to_type) { AddCastOp(graph, in_node, op_node, in_var_type, to_type, suffix, block_desc, cast_map); } } else { if (!in_var->Persistable() && IsFloatVarType(in_var_type) && in_var_type != to_type) { AddCastOp(graph, in_node, op_node, in_var_type, to_type, suffix, block_desc, cast_map); } } VLOG(3) << " in_node name " << in_var->Name() << " data_type " << in_var_type; } void ConvertAllFp64ToFp32(framework::ir::Graph* graph) { auto op_nodes = framework::ir::TopologySortOperations(*graph); for (auto* op_node : op_nodes) { if (!op_node->IsOp()) continue; auto op_type = op_node->Op()->Type(); if (op_type == "feed" || op_type == "fetch") continue; if (op_type == "fill_constant") { if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) == static_cast(framework::proto::VarType::FP64)) op_node->Op()->SetAttr( "dtype", static_cast(framework::proto::VarType::FP32)); } else if (op_type == "assign_value") { if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) == static_cast(framework::proto::VarType::FP64)) op_node->Op()->SetAttr( "dtype", static_cast(framework::proto::VarType::FP32)); } else if (op_type == "eye") { if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) == static_cast(framework::proto::VarType::FP64)) op_node->Op()->SetAttr( "dtype", static_cast(framework::proto::VarType::FP32)); } else if (op_type == "fill_any_like") { if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) == static_cast(framework::proto::VarType::FP64)) op_node->Op()->SetAttr( "dtype", static_cast(framework::proto::VarType::FP32)); } else if (op_type == "cast") { if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("in_dtype")) == static_cast(framework::proto::VarType::FP64)) op_node->Op()->SetAttr( "in_dtype", static_cast(framework::proto::VarType::FP32)); if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("out_dtype")) == static_cast(framework::proto::VarType::FP64)) op_node->Op()->SetAttr( "out_dtype", static_cast(framework::proto::VarType::FP32)); } auto inputs = op_node->inputs; for (auto* in_node : inputs) { if (in_node->IsCtrlVar()) continue; auto* in_var = in_node->Var(); if (!in_var->Persistable() && in_var->GetDataType() == framework::proto::VarType::FP64) { in_var->SetDataType(framework::proto::VarType::FP32); } } } } // Handle special ops which contains dtype attribute. e.g., fill_constant, // assign_value. void HandleSpecialOps(framework::OpDesc* op_desc) { if (op_desc->Type() == "fill_constant") { if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) == static_cast(framework::proto::VarType::FP32)) op_desc->SetAttr("dtype", static_cast(framework::proto::VarType::FP16)); } else if (op_desc->Type() == "assign_value") { if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) == static_cast(framework::proto::VarType::FP32)) op_desc->SetAttr("dtype", static_cast(framework::proto::VarType::FP16)); } else if (op_desc->Type() == "eye") { if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) == static_cast(framework::proto::VarType::FP32)) op_desc->SetAttr("dtype", static_cast(framework::proto::VarType::FP16)); } else if (op_desc->Type() == "fill_any_like") { if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) == static_cast(framework::proto::VarType::FP32)) op_desc->SetAttr("dtype", static_cast(framework::proto::VarType::FP16)); } else if (op_desc->Type() == "fill_constant_batch_size_like") { if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) == static_cast(framework::proto::VarType::FP32)) op_desc->SetAttr("dtype", static_cast(framework::proto::VarType::FP16)); } } // We modify op's input output precision, and we need to fix cast op in_dtype // and out_dtype attribute. void FixCastAttr(framework::ir::Graph* graph) { auto op_nodes = framework::ir::TopologySortOperations(*graph); for (auto* op_node : op_nodes) { if (!op_node->IsOp()) continue; auto op_type = op_node->Op()->Type(); if (op_type != "cast") continue; auto input = op_node->inputs[0]; auto output = op_node->outputs[0]; op_node->Op()->SetAttr("in_dtype", static_cast(input->Var()->GetDataType())); op_node->Op()->SetAttr("out_dtype", static_cast(output->Var()->GetDataType())); } } void FindVarsInMultiBlock( framework::ProgramDesc* program_desc, std::unordered_map>* vars_in_multi_block_map, std::vector>* vars_appear_multi_in_one_block) { std::vector> block_var_names_set(program_desc->Size()); for (size_t i = 0; i < program_desc->Size(); ++i) { for (auto op : program_desc->Block(i).AllOps()) { auto in_names = op->InputArgumentNames(); block_var_names_set[i].insert(in_names.begin(), in_names.end()); auto out_names = op->OutputArgumentNames(); if (op->HasAttr("sub_block") == false) { for (auto& n : out_names) { if (block_var_names_set[i].count(n)) { (*vars_appear_multi_in_one_block)[i].insert(n); } } } block_var_names_set[i].insert(out_names.begin(), out_names.end()); } } for (size_t i = 0; i < program_desc->Size() - 1; ++i) { for (size_t j = i + 1; j < program_desc->Size(); ++j) { std::set vars_in_multi_block; std::set_intersection( block_var_names_set[i].begin(), block_var_names_set[i].end(), block_var_names_set[j].begin(), block_var_names_set[j].end(), std::inserter(vars_in_multi_block, vars_in_multi_block.begin())); for (auto name : vars_in_multi_block) { vars_in_multi_block_map->emplace( name, std::make_pair(framework::proto::VarType::FP32, i)); } } } } bool OpInOutHasTensorArray( std::vector graphes, int block_idx, framework::ir::Node* op_node, std::unordered_map>* vars_in_multi_block_map) { CHECK_EQ(op_node->IsOp(), true); for (auto in : op_node->inputs) { auto* real_node = GetRealNode(graphes, block_idx, in, vars_in_multi_block_map); if (!NodeVarHasDtype(real_node)) continue; if (real_node->Var()->GetType() == framework::proto::VarType::LOD_TENSOR_ARRAY) return true; } for (auto out : op_node->outputs) { auto* real_node = GetRealNode(graphes, block_idx, out, vars_in_multi_block_map); if (!NodeVarHasDtype(real_node)) continue; if (real_node->Var()->GetType() == framework::proto::VarType::LOD_TENSOR_ARRAY) return true; } return false; } void ConvertTensorDtype( framework::ProgramDesc* program_desc, std::vector graphes, const std::unordered_set& blacklist, bool keep_io_types, phi::Backend backend, phi::DataType tensor_dtype, int block_idx, std::unordered_map>* vars_in_multi_block_map, const std::vector>& vars_appear_multi_in_one_block) { auto graph = graphes[block_idx]; framework::proto::VarType::Type to_type; if (tensor_dtype == phi::DataType::FLOAT16) { to_type = framework::proto::VarType::FP16; } else if (tensor_dtype == phi::DataType::BFLOAT16) { to_type = framework::proto::VarType::BF16; } else { PADDLE_THROW(paddle::platform::errors::InvalidArgument( "mixed_precision currently not supported dtype %d, we now only " "support fp16 and bf16.", static_cast(tensor_dtype))); } auto* block_desc = framework::ir::TopologySortOperations(*graph)[0]->Op()->Block(); int num_low_precision = 0; int suffix = 0; std::vector output_nodes; std::unordered_map cast_map; auto op_nodes = framework::ir::TopologySortOperations(*graph); for (auto* op_node : op_nodes) { if (!op_node->IsOp()) continue; auto op_type = op_node->Op()->Type(); VLOG(3) << "-------------------- op_type " << op_type << ", phi_type " << phi::TransToPhiKernelName(op_type); // 1. set input dtype. if (op_type == "feed") { auto feed_var = op_node->outputs[0]->Var(); if (!keep_io_types && feed_var->GetDataType() == framework::proto::VarType::FP32) { feed_var->SetDataType(to_type); } } else if (op_type == "fetch") { auto* fetch_var = op_node->inputs[0]; output_nodes.push_back(fetch_var); continue; } else if (op_type == "cast") { continue; } else if (op_node->Op()->HasAttr("sub_block")) { // NOLINT // sub_block op's output dtype should be same as input dtype, if have the // same name. std::unordered_map in_name_to_node; for (auto* in : op_node->inputs) { auto* real_node = GetRealNode(graphes, block_idx, in, vars_in_multi_block_map); if (NodeVarHasDtype(real_node)) { in_name_to_node[in->Name()] = in; } } for (auto out : op_node->outputs) { auto* real_node = GetRealNode(graphes, block_idx, out, vars_in_multi_block_map); if (NodeVarHasDtype(real_node)) { if (in_name_to_node.count(out->Name())) real_node->Var()->SetDataType( in_name_to_node[out->Name()]->Var()->GetDataType()); } } continue; } // A strange case found in multi block. else if (op_type == "assign" && // NOLINT op_node->inputs[0]->Name() == op_node->outputs[0]->Name()) { VLOG(2) << " in out are same, continue"; continue; } // Handle tensor array. else if (OpInOutHasTensorArray( // NOLINT graphes, block_idx, op_node, vars_in_multi_block_map)) { VLOG(2) << " in or out has tensor array, continue"; continue; } // 2. if op support fp16/bf16 and not in blacklist. // - cast weight to fp16/bf16. // - add cast op if the input dtype is not fp16/bf16. // - set output dtype. // // If a var(op's out var) appears multiple times in a block, we should not // convert to fp16. else if (blacklist.count(op_type) == 0 && // NOLINT !VarIsMultiOpsOut(graphes, block_idx, op_node, vars_in_multi_block_map, vars_appear_multi_in_one_block)) { bool support_precision = OpSupportPrecision(op_type, backend, tensor_dtype, blacklist); VLOG(2) << " support low precision " << support_precision; // if op not has float input, we will not choose the low precision kernel. { bool has_float_input{false}; for (auto in_node : op_node->inputs) { auto* real_node = GetRealNode(graphes, block_idx, in_node, vars_in_multi_block_map); if (real_node->Var()->GetDataType() == proto::VarType::FP16 || real_node->Var()->GetDataType() == proto::VarType::FP32 || real_node->Var()->GetDataType() == proto::VarType::FP64 || real_node->Var()->GetDataType() == proto::VarType::BF16) { has_float_input = true; break; } } if (!has_float_input) { support_precision = false; VLOG(2) << " op doesn't has float input, just skip."; } } if (support_precision) { HandleSpecialOps(op_node->Op()); ++num_low_precision; auto inputs = op_node->inputs; // Process inputs. for (auto* in_node : inputs) { ProcessInputNode(true, graphes, in_node, op_node, &suffix, block_desc, &cast_map, to_type, block_idx, vars_in_multi_block_map); } // Process outputs. for (auto* out_node : op_node->outputs) { ProcessOutputNode( graphes, block_idx, out_node, to_type, vars_in_multi_block_map); } } else { auto inputs = op_node->inputs; for (auto* in_node : inputs) { ProcessInputNode(false, graphes, in_node, op_node, &suffix, block_desc, &cast_map, framework::proto::VarType::FP32, block_idx, vars_in_multi_block_map); } } } // 3. check op not support fp16/bf16 or in blacklist. // - add cast op if the input dtype is not fp32. else { // NOLINT auto ins = op_node->inputs; for (auto* in_node : ins) { if (in_node->IsCtrlVar()) continue; auto* in_var = in_node->Var(); if (in_var->GetDataType() == to_type) { AddCastOp(graph, in_node, op_node, to_type, framework::proto::VarType::FP32, &suffix, block_desc, &cast_map); } } } } // 4. if output_op's dtype is not compatible to output dtype, then just // insert cast. for (auto* node : output_nodes) { if (node->IsCtrlVar()) continue; auto var = node->Var(); if (keep_io_types && var->GetDataType() == to_type) { // fp16/bf16 -> fp32. AddCastOp(graph, node, node->outputs[0], to_type, framework::proto::VarType::FP32, &suffix, block_desc, &cast_map); } else if (!keep_io_types && var->GetDataType() == framework::proto::VarType::FP32) { // fp32 -> fp16/bf16 AddCastOp(graph, node, node->outputs[0], framework::proto::VarType::FP32, to_type, &suffix, block_desc, &cast_map); } } for (auto node : graph->Nodes()) { auto* real_node = GetRealNode(graphes, block_idx, node, vars_in_multi_block_map); if (!NodeVarHasDtype(real_node)) continue; if (vars_in_multi_block_map->count(real_node->Name()) && vars_in_multi_block_map->at(real_node->Name()).second == block_idx) { vars_in_multi_block_map->at(real_node->Name()).first = real_node->Var()->GetDataType(); } } if (num_low_precision) LOG(INFO) << "--- detected " << num_low_precision << " low precision ops in " << block_idx << " subgraph"; } } // namespace bool OpSupportPrecision(const std::string& op_type, phi::Backend backend, phi::DataType precision, const std::unordered_set& blacklist) { auto phi_op_type = phi::TransToPhiKernelName(op_type); bool support_precision = false; if (blacklist.count(op_type) == 0) { if (backend == phi::Backend::GPU) support_precision = GpuKernelSupportPrecision(op_type, precision); else support_precision = PhiKernelSupportPrecision(phi_op_type, backend, precision); } return support_precision; } void AddCastOp( framework::ir::Graph* graph, framework::ir::Node* node, framework::ir::Node* next_op, framework::proto::VarType::Type from_type, framework::proto::VarType::Type to_type, int* suffix, framework::BlockDesc* block_desc, std::unordered_map* map) { auto update_cast_desc = [&](framework::OpDesc& desc, const std::string& x_name, const std::string& out_name, const int in_dtype, const int out_dtype) { desc.SetType("cast"); desc.SetInput("X", {x_name}); desc.SetOutput("Out", {out_name}); desc.SetAttr("in_dtype", in_dtype); desc.SetAttr("out_dtype", out_dtype); desc.SetAttr("use_mkldnn", false); desc.SetAttr("with_quant_attr", false); desc.Flush(); }; if (map->count(node) == 0) { // insert cast op before node. std::string cast_input_name = node->Var()->Name(); std::string cast_output_name = node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++); CHECK_NOTNULL(block_desc); framework::OpDesc cast_op_desc(block_desc); update_cast_desc(cast_op_desc, cast_input_name, cast_output_name, static_cast(from_type), static_cast(to_type)); auto* cast_op_node = graph->CreateOpNode(&cast_op_desc); auto* cast_output_vardesc = block_desc->Var(cast_output_name); cast_output_vardesc->SetPersistable(false); cast_output_vardesc->SetDataType(to_type); cast_output_vardesc->SetShape(node->Var()->GetShape()); auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc); IR_NODE_LINK_TO(cast_op_node, cast_output_node); (*map)[node] = cast_output_node; } next_op->Op()->RenameInput(node->Name(), map->at(node)->Name()); IR_NODE_LINK_TO(node, map->at(node)->inputs[0]); IR_NODE_LINK_TO(map->at(node), next_op); } void ConvertToMixedPrecision(const std::string& model_file, const std::string& params_file, const std::string& mixed_model_file, const std::string& mixed_params_file, phi::DataType mixed_precision, phi::Backend backend, bool keep_io_types, std::unordered_set black_list) { paddle::CPUPlace place; framework::Executor executor(place); framework::Scope scope; auto program_desc = inference::Load(&executor, &scope, model_file, params_file); auto main_graph = std::unique_ptr( new framework::ir::Graph(*program_desc)); std::unordered_map> vars_in_multi_block_map; std::vector> vars_appear_multi_in_one_block( program_desc->Size()); FindVarsInMultiBlock(program_desc.get(), &vars_in_multi_block_map, &vars_appear_multi_in_one_block); std::vector graphes; for (size_t i = 0; i < main_graph->SubGraphsSize(); ++i) { auto graph = main_graph->GetSubGraph(i); graphes.push_back(graph); VLOG(2) << " -------- handle subgraph " << i << ", has " << graph->Nodes().size() << " nodes --------"; ConvertAllFp64ToFp32(graph); ConvertTensorDtype(program_desc.get(), graphes, black_list, keep_io_types, backend, mixed_precision, i, &vars_in_multi_block_map, vars_appear_multi_in_one_block); FixCastAttr(graph); } framework::ProgramDesc mixed_program_desc; framework::ir::GraphToProgram(*main_graph, &mixed_program_desc); SaveMixedModel(main_graph.get(), &scope, &mixed_program_desc, mixed_model_file, mixed_params_file, mixed_precision, vars_in_multi_block_map); } } // namespace analysis } // namespace inference } // namespace paddle