# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid as fluid import numpy as np from paddle.fluid.framework import _test_eager_guard class TestImperativeContainerSequential(unittest.TestCase): def func_sequential(self): data = np.random.uniform(-1, 1, [5, 10]).astype('float32') with fluid.dygraph.guard(): data = fluid.dygraph.to_variable(data) model1 = fluid.dygraph.Sequential( fluid.Linear(10, 1), fluid.Linear(1, 2)) res1 = model1(data) self.assertListEqual(res1.shape, [5, 2]) model1[1] = fluid.Linear(1, 3) res1 = model1(data) self.assertListEqual(res1.shape, [5, 3]) loss1 = fluid.layers.reduce_mean(res1) loss1.backward() l1 = fluid.Linear(10, 1) l2 = fluid.Linear(1, 3) model2 = fluid.dygraph.Sequential(('l1', l1), ('l2', l2)) self.assertEqual(len(model2), 2) res2 = model2(data) self.assertTrue(l1 is model2.l1) self.assertListEqual(res2.shape, res1.shape) self.assertEqual(len(model1.parameters()), len(model2.parameters())) del model2['l2'] self.assertEqual(len(model2), 1) res2 = model2(data) self.assertListEqual(res2.shape, [5, 1]) model2.add_sublayer('l3', fluid.Linear(1, 3)) model2.add_sublayer('l4', fluid.Linear(3, 4)) self.assertEqual(len(model2), 3) res2 = model2(data) self.assertListEqual(res2.shape, [5, 4]) loss2 = fluid.layers.reduce_mean(res2) loss2.backward() def test_sequential(self): with _test_eager_guard(): self.func_sequential() self.func_sequential() def func_sequential_list_params(self): data = np.random.uniform(-1, 1, [5, 10]).astype('float32') with fluid.dygraph.guard(): data = fluid.dygraph.to_variable(data) model1 = fluid.dygraph.Sequential( fluid.Linear(10, 1), fluid.Linear(1, 2)) res1 = model1(data) self.assertListEqual(res1.shape, [5, 2]) model1[1] = fluid.Linear(1, 3) res1 = model1(data) self.assertListEqual(res1.shape, [5, 3]) loss1 = fluid.layers.reduce_mean(res1) loss1.backward() l1 = fluid.Linear(10, 1) l2 = fluid.Linear(1, 3) model2 = fluid.dygraph.Sequential(['l1', l1], ['l2', l2]) self.assertEqual(len(model2), 2) res2 = model2(data) self.assertTrue(l1 is model2.l1) self.assertListEqual(res2.shape, res1.shape) self.assertEqual(len(model1.parameters()), len(model2.parameters())) del model2['l2'] self.assertEqual(len(model2), 1) res2 = model2(data) self.assertListEqual(res2.shape, [5, 1]) model2.add_sublayer('l3', fluid.Linear(1, 3)) model2.add_sublayer('l4', fluid.Linear(3, 4)) self.assertEqual(len(model2), 3) res2 = model2(data) self.assertListEqual(res2.shape, [5, 4]) loss2 = fluid.layers.reduce_mean(res2) loss2.backward() def test_sequential_list_params(self): with _test_eager_guard(): self.func_sequential_list_params() self.func_sequential_list_params() if __name__ == '__main__': unittest.main()