// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "gtest/gtest.h" #include "paddle/fluid/framework/details/broadcast_op_handle.h" #include "paddle/fluid/platform/device_context.h" namespace paddle { namespace framework { namespace details { namespace f = paddle::framework; namespace p = paddle::platform; // test data amount const f::DDim kDims = {20, 20}; struct TestBroadcastOpHandle { std::vector> ctxs_; std::vector local_scopes_; std::vector param_scopes_; Scope g_scope_; std::unique_ptr op_handle_; std::vector> vars_; std::vector place_list_; bool use_gpu_; #ifdef PADDLE_WITH_CUDA std::unique_ptr nccl_ctxs_; #endif void WaitAll() { for (size_t j = 0; j < ctxs_.size(); ++j) { ctxs_[j]->Wait(); } #ifdef PADDLE_WITH_CUDA if (nccl_ctxs_) { nccl_ctxs_->WaitAll(); } #endif } void InitCtxOnGpu(bool use_gpu) { use_gpu_ = use_gpu; if (use_gpu_) { #ifdef PADDLE_WITH_CUDA int count = p::GetCUDADeviceCount(); if (count <= 1) { LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA " "device count is " << count; exit(0); } for (int i = 0; i < count; ++i) { auto p = p::CUDAPlace(i); place_list_.push_back(p); ctxs_.emplace_back(new p::CUDADeviceContext(p)); } nccl_ctxs_.reset(new platform::NCCLContextMap(place_list_)); #else PADDLE_THROW("CUDA is not support."); #endif } else { int count = 8; for (int i = 0; i < count; ++i) { auto p = p::CPUPlace(); place_list_.push_back(p); ctxs_.emplace_back(new p::CPUDeviceContext(p)); } #ifdef PADDLE_WITH_CUDA nccl_ctxs_.reset(nullptr); #endif } } void InitBroadcastOp(size_t input_scope_idx) { for (size_t j = 0; j < place_list_.size(); ++j) { local_scopes_.push_back(&(g_scope_.NewScope())); Scope& local_scope = local_scopes_.back()->NewScope(); *local_scopes_.back() ->Var(details::kLocalExecScopeName) ->GetMutable() = &local_scope; local_scope.Var("out"); param_scopes_.emplace_back(&local_scope); } param_scopes_[input_scope_idx]->Var("input"); std::unique_ptr n = ir::CreateNodeForTest("node0", ir::Node::Type::kOperation); if (use_gpu_) { #ifdef PADDLE_WITH_CUDA op_handle_.reset(new BroadcastOpHandle(n.get(), local_scopes_, place_list_, nccl_ctxs_.get())); #else PADDLE_THROW("CUDA is not support."); #endif } else { #ifdef PADDLE_WITH_CUDA op_handle_.reset(new BroadcastOpHandle(n.get(), local_scopes_, place_list_, nccl_ctxs_.get())); #else op_handle_.reset( new BroadcastOpHandle(n.get(), local_scopes_, place_list_)); #endif } std::unique_ptr v = ir::CreateNodeForTest("node1", ir::Node::Type::kVariable); auto* in_var_handle = new VarHandle(v.get(), 1, input_scope_idx, "input", place_list_[input_scope_idx]); vars_.emplace_back(in_var_handle); op_handle_->AddInput(in_var_handle); // add dummy var std::unique_ptr v2 = ir::CreateNodeForTest("node2", ir::Node::Type::kVariable); vars_.emplace_back(new DummyVarHandle(v2.get())); DummyVarHandle* dummy_var_handle = static_cast(vars_.back().get()); dummy_var_handle->ClearGeneratedOp(); op_handle_->AddInput(dummy_var_handle); for (size_t j = 0; j < place_list_.size(); ++j) { if (!use_gpu_) { op_handle_->SetDeviceContext(place_list_[j], ctxs_[j].get()); } std::unique_ptr v3 = ir::CreateNodeForTest("node3", ir::Node::Type::kVariable); VarHandle* out_var_handle = new VarHandle(v3.get(), 2, j, "out", place_list_[j]); vars_.emplace_back(out_var_handle); op_handle_->AddOutput(out_var_handle); } // add dummy var std::unique_ptr v4 = ir::CreateNodeForTest("node4", ir::Node::Type::kVariable); vars_.emplace_back(new DummyVarHandle(v4.get())); DummyVarHandle* out_dummy_var_handle = static_cast(vars_.back().get()); out_dummy_var_handle->ClearGeneratedOp(); op_handle_->AddOutput(out_dummy_var_handle); } std::vector InitLoDTensor(const std::string& varname, size_t input_scope_idx, const f::LoD& lod, float val_scalar = 0.0) { auto var = param_scopes_[input_scope_idx]->FindVar(varname); PADDLE_ENFORCE_NOT_NULL(var); auto lod_tensor = var->GetMutable(); std::vector send_vector(static_cast(f::product(kDims))); for (size_t k = 0; k < send_vector.size(); ++k) { send_vector[k] = k + val_scalar; } paddle::framework::TensorFromVector( send_vector, *(ctxs_[input_scope_idx]), lod_tensor); lod_tensor->set_lod(lod); lod_tensor->Resize(kDims); return send_vector; } std::vector InitSelectedRows(const std::string& varname, size_t input_scope_idx, const std::vector& rows, int height, float value_scalar = 0.0) { std::vector send_vector(static_cast(f::product(kDims))); for (size_t k = 0; k < send_vector.size(); ++k) { send_vector[k] = k + value_scalar; } auto var = param_scopes_[input_scope_idx]->FindVar(varname); PADDLE_ENFORCE_NOT_NULL(var); auto selected_rows = var->GetMutable(); auto value = selected_rows->mutable_value(); value->mutable_data(kDims, place_list_[input_scope_idx]); selected_rows->set_height(height); selected_rows->set_rows(rows); paddle::framework::TensorFromVector( send_vector, *(ctxs_[input_scope_idx]), value); return send_vector; } void SelectedRowsEqual(const std::string& varname, int input_scope_idx, const std::vector& send_vector, const std::vector& rows, int height) { auto var = param_scopes_[input_scope_idx]->FindVar(varname); PADDLE_ENFORCE_NOT_NULL(var); auto& selected_rows = var->Get(); auto rt = selected_rows.value(); PADDLE_ENFORCE_EQ(selected_rows.height(), height, "height is not equal."); for (size_t k = 0; k < selected_rows.rows().size(); ++k) { PADDLE_ENFORCE_EQ(selected_rows.rows()[k], rows[k]); } p::CPUPlace cpu_place; f::Tensor result_tensor; f::TensorCopySync(rt, cpu_place, &result_tensor); float* ct = result_tensor.data(); for (int64_t i = 0; i < f::product(kDims); ++i) { ASSERT_NEAR(ct[i], send_vector[i], 1e-5); } } void LoDTensorEqual(const std::string& varname, const std::vector& send_vec, const f::LoD& lod, framework::Scope* scope) { p::CPUPlace cpu_place; auto var = scope->FindVar(varname); PADDLE_ENFORCE_NOT_NULL(var); auto tensor = var->Get(); PADDLE_ENFORCE_EQ(tensor.lod(), lod, "lod is not equal."); f::Tensor result_tensor; f::TensorCopySync(tensor, cpu_place, &result_tensor); float* ct = result_tensor.mutable_data(cpu_place); for (int64_t k = 0; k < f::product(kDims); ++k) { ASSERT_NEAR(ct[k], send_vec[k], 1e-5); } } void TestBroadcastLodTensor(size_t input_scope_idx) { f::LoD lod{{0, 10, 20}}; auto send_vector = InitLoDTensor("input", input_scope_idx, lod); op_handle_->Run(false); WaitAll(); for (size_t j = 0; j < place_list_.size(); ++j) { LoDTensorEqual("out", send_vector, lod, param_scopes_[j]); } } void TestBroadcastSelectedRows(size_t input_scope_idx) { std::vector rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1, 2, 4, 6, 3, 1, 1, 1, 1, 3, 7}; int height = static_cast(kDims[0] * 2); auto send_vector = InitSelectedRows("input", input_scope_idx, rows, height); op_handle_->Run(false); WaitAll(); for (size_t j = 0; j < place_list_.size(); ++j) { SelectedRowsEqual("out", input_scope_idx, send_vector, rows, height); } } }; } // namespace details } // namespace framework } // namespace paddle