#!/usr/bin/env/python #-*python-*- from paddle.trainer_config_helpers import * ################################### DATA Configuration ############################################# is_predict = get_config_arg('is_predict', bool, False) trn = './data/train.list' if not is_predict else None tst = './data/test.list' if not is_predict else './data/pred.list' process = 'process' if not is_predict else 'process_predict' define_py_data_sources2( train_list=trn, test_list=tst, module="dataprovider", obj=process) ################################### Parameter Configuaration ####################################### TERM_NUM = 24 FORECASTING_NUM = 25 emb_size = 16 batch_size = 128 if not is_predict else 1 settings( batch_size=batch_size, learning_rate=1e-3, learning_method=RMSPropOptimizer()) ################################### Algorithm Configuration ######################################## output_label = [] link_encode = data_layer(name='link_encode', size=TERM_NUM) for i in xrange(FORECASTING_NUM): # Each task share same weight. link_param = ParamAttr( name='_link_vec.w', initial_max=1.0, initial_min=-1.0) link_vec = fc_layer(input=link_encode, size=emb_size, param_attr=link_param) score = fc_layer(input=link_vec, size=4, act=SoftmaxActivation()) if is_predict: maxid = maxid_layer(score) output_label.append(maxid) else: # Multi-task training. label = data_layer(name='label_%dmin' % ((i + 1) * 5), size=4) cls = classification_cost( input=score, name="cost_%dmin" % ((i + 1) * 5), label=label) output_label.append(cls) outputs(output_label)