# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..meta_optimizers import AMPOptimizer from ..meta_optimizers import RecomputeOptimizer from ..meta_optimizers import GradientMergeOptimizer from ..meta_optimizers import GraphExecutionOptimizer from ..meta_optimizers import PipelineOptimizer from ..meta_optimizers import LocalSGDOptimizer from ..meta_optimizers import LarsOptimizer __all__ = ["MetaOptimizerFactory"] meta_optimizer_names = [ "AMPOptimizer", "RecomputeOptimizer", "GradientMergeOptimizer", "GraphExecutionOptimizer", "PipelineOptimizer", "LocalSGDOptimizer", "LarsOptimizer", ] class MetaOptimizerFactory(object): def __init__(self): pass def _get_valid_meta_optimizers(self, user_defined_optimizer): opt_list = [] for opt_name in meta_optimizer_names: opt_list.append(globals()[opt_name](user_defined_optimizer)) return opt_list