/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; inline framework::DDim GetShape(const framework::ExecutionContext &ctx) { // 1. shape is a Tensor if (ctx.HasInput("ShapeTensor")) { auto *shape_tensor = ctx.Input("ShapeTensor"); auto *shape_data = shape_tensor->data(); framework::Tensor cpu_shape_tensor; if (platform::is_gpu_place(shape_tensor->place())) { TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor); shape_data = cpu_shape_tensor.data(); } auto vec_shape = std::vector(shape_data, shape_data + shape_tensor->numel()); return framework::make_ddim(vec_shape); } // 2. shape is a list/tuple containing Tensor auto shape_tensor_list = ctx.MultiInput("ShapeTensorList"); if (shape_tensor_list.size() > 0) { std::vector vec_shape; for (size_t i = 0; i < shape_tensor_list.size(); ++i) { auto tensor = shape_tensor_list[i]; PADDLE_ENFORCE_EQ( tensor->dims(), framework::make_ddim({1}), "ShapeError: If the element type of 'shape' in FillConstantOp is " "Tensor, " "the element's shape must be [1]. But received the element's shape " "is [%s]", tensor->dims()); if (platform::is_gpu_place(tensor->place())) { framework::Tensor temp; TensorCopySync(*tensor, platform::CPUPlace(), &temp); vec_shape.push_back(*temp.data()); } else { vec_shape.push_back(*tensor->data()); } } return framework::make_ddim(vec_shape); } // 3. shape is a list/tuple without containing Tensor auto vec_shape = ctx.Attr>("shape"); return framework::make_ddim(vec_shape); } template class FillConstantKernel : public framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext &ctx) const override { auto data_type = static_cast(ctx.Attr("dtype")); auto str_value = ctx.Attr("str_value"); auto float_value = ctx.Attr("value"); auto force_cpu = ctx.Attr("force_cpu"); framework::Tensor *tensor = nullptr; framework::Variable *out_var = ctx.OutputVar("Out"); T value; if (str_value.empty()) { value = static_cast(float_value); } else { std::stringstream convert_stream(str_value); if (std::is_same::value) { int64_t tmp_value; convert_stream >> tmp_value; value = static_cast(tmp_value); } else { double tmp_value; convert_stream >> tmp_value; value = static_cast(tmp_value); } } auto shape = GetShape(ctx); if (out_var->IsType()) { tensor = out_var->GetMutable(); tensor->Resize(shape); } else if (out_var->IsType()) { tensor = out_var->GetMutable()->mutable_value(); tensor->Resize(shape); } else { PADDLE_THROW( "fill constant op's output only" "supports SelectedRows and LoDTensor"); } platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto &dev_ctx = *pool.Get(ctx.GetPlace()); bool cpu_place = force_cpu || ctx.GetPlace() == platform::CPUPlace(); if (cpu_place) { tensor->mutable_data(platform::CPUPlace(), data_type); math::SetConstant functor; functor(reinterpret_cast(dev_ctx), tensor, static_cast(value)); } #ifdef PADDLE_WITH_CUDA if (!cpu_place) { tensor->mutable_data(ctx.GetPlace(), data_type); math::SetConstant functor; functor(reinterpret_cast(dev_ctx), tensor, static_cast(value)); } #endif } }; } // namespace operators } // namespace paddle