/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/memory/memory.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/place.h" namespace paddle { namespace framework { class LoDTensor; class Tensor { #ifdef PADDLE_WITH_MKLDNN public: inline mkldnn::memory::format format() const { return format_; } inline void set_format(const mkldnn::memory::format format) { format_ = format; } protected: /** * @brief the detail format of memory block which have layout as kMKLDNN * * @note MKLDNN lib support various memory format like nchw, nhwc, nChw8C, * nChw16c, etc. For a MKLDNN memory block, layout will be set as * DataLayout::kMKLDNN meanwhile detail memory format will be kept in * this field. */ mkldnn::memory::format format_ = mkldnn::memory::format::format_undef; #endif public: template friend struct EigenTensor; template friend struct EigenMatrix; template friend struct EigenVector; public: Tensor() : type_(proto::VarType::FP32), offset_(0) {} /*! Return a pointer to mutable memory block. */ template T* data(); /*! Return a pointer to constant memory block. */ template const T* data() const; inline bool IsInitialized() const; /** * @brief Return a pointer to mutable memory block. * @note If not exist, then allocation. */ template T* mutable_data(platform::Place place, memory::Allocator::Attr attr = memory::Allocator::kDefault, size_t requested_size = 0); void* mutable_data(platform::Place place, proto::VarType::Type type, memory::Allocator::Attr attr = memory::Allocator::kDefault, size_t requested_size = 0); void* mutable_data(platform::Place place, memory::Allocator::Attr attr = memory::Allocator::kDefault, size_t requested_size = 0); /** * @brief Return a pointer to mutable memory block. * * @param[in] dims The dimensions of the memory block. * @param[in] place The place of the memory block. * @param[in] requested_size The size of the block in bytes. * * @note If not exist, then allocation. */ template T* mutable_data(DDim dims, platform::Place place, memory::Allocator::Attr attr = memory::Allocator::kDefault, size_t requested_size = 0); /*! Return the dimensions of the memory block. */ const DDim& dims() const; /*! Return the numel of the memory block. */ int64_t numel() const; /*! Resize the dimensions of the memory block. */ Tensor& Resize(const DDim& dims); /*! The internal of two tensors share the same memory block. */ Tensor& ShareDataWith(const Tensor& src); /** * @brief Return a sub-tensor of the given tensor. * * @param[in] begin_idx The index of the start row(inclusive) to slice. * The index number begins from 0. * @param[in] end_idx The index of the end row(exclusive) to slice. * The index number begins from 0. */ Tensor Slice(int begin_idx, int end_idx) const; platform::Place place() const { PADDLE_ENFORCE_NOT_NULL( holder_, "Tensor not initialized yet when Tensor::place() is called."); return holder_->place(); } proto::VarType::Type type() const { PADDLE_ENFORCE_NOT_NULL( holder_, "Tensor not initialized yet when Tensor::type() is called."); return type_; } // memory size returns the holding memory size in byte. size_t memory_size() const; void check_memory_size() const; DataLayout layout() const { return layout_; } void set_layout(const DataLayout layout) { layout_ = layout; } void clear() { holder_ = nullptr; } const std::shared_ptr& Holder() const { return holder_; } size_t offset() const { return offset_; } private: /*! holds the memory block if allocated. */ std::shared_ptr holder_; proto::VarType::Type type_; /** * @brief points to elements dimensions. * * @note dims_ do not indicate the memory block size. */ DDim dims_; /** * @brief the layout of memory block, default is NHWC. * * @note the memory allocation order, describe how weight/data is stored * For example, in 4-D Tensor(rank=4), there are three commonly * used layout. They are * NCHW, NHWC, CHWN. * N,C,H,W for respectively the batch size, the number of * feature maps, the height. */ // Fix me: here just change the default layout to kNCHW // it doesn't fix the real issue, i.e. feeder should set up tensor layout // according to actual input data DataLayout layout_ = DataLayout::kNCHW; /** * @brief A PlaceHolder may be shared by more than one tensor. * * @note Some of them may be slices of the others. So the offset_ * is introduced here to indicate the byte offset between * PlaceHolder::ptr_ and where the tensor data really begins. */ size_t offset_; }; } // namespace framework } // namespace paddle #include "paddle/fluid/framework/tensor_impl.h"