# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import unicode_literals from __future__ import print_function import os import sys import time import numpy as np os.environ[str("FLAGS_check_nan_inf")] = str("1") os.environ[str("GLOG_vmodule")] = str("nan_inf_utils_detail=10") import paddle.fluid.core as core import paddle import paddle.fluid as fluid import paddle.compat as cpt paddle.enable_static() np.random.seed(0) def generator(): batch_size = 5 for i in range(5): curr_train_x = np.random.randint( batch_size, size=(batch_size, 3)).astype("float32") if i >= 2: curr_train_x[0, :] = np.nan curr_train_x[-1, :] = np.inf res = [] for i in range(batch_size): y = i % 3 res.append([y]) y_label = np.array(res).astype('int64') yield [curr_train_x, y_label] def net(): x = fluid.layers.data(name="x", shape=[3], dtype='float32') y = fluid.layers.data(name="y", shape=[1], dtype='int64') # test int64 value zero = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) # test float16 value fp16_zero = fluid.layers.cast(zero, dtype='float16') y = y + zero hidden = x for i in range(2): hidden = fluid.layers.fc(input=hidden, size=400, act="sigmoid") hidden = fluid.layers.fc(input=hidden, size=3, act=None) cost, y_predict = fluid.layers.softmax_with_cross_entropy( hidden, y, return_softmax=True) acc_top1 = fluid.layers.accuracy(input=y_predict, label=y, k=1) avg_cost = fluid.layers.mean(cost) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.05) sgd_optimizer.minimize(avg_cost) return y_predict, avg_cost, acc_top1 def check(use_cuda): main = fluid.Program() startup = fluid.Program() scope = fluid.core.Scope() with fluid.scope_guard(scope): with fluid.program_guard(main, startup): y_predict, avg_cost, acc_top1 = net() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup) step = 0.0 for train_data, y_label in generator(): outs = exe.run( main, feed={'x': train_data, 'y': y_label}, fetch_list=[y_predict.name, avg_cost.name, acc_top1.name]) step += 1 print('iter={:.0f},cost={},acc1={}'.format(step, outs[1][0], outs[2][0])) if __name__ == '__main__': if core.is_compiled_with_cuda(): try: check(use_cuda=True) assert False except Exception as e: print(e) print(type(e)) # Note. Enforce in cuda kernel may not catch in paddle, and # Exception type will be RuntimeError assert type(e) == core.EnforceNotMet or type(e) == RuntimeError try: check(use_cuda=False) assert False except Exception as e: print(e) print(type(e)) assert type(e) == core.EnforceNotMet