# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.static import Program, program_guard # Test python API class TestRandintLikeAPI(unittest.TestCase): def setUp(self): self.x_bool = np.zeros((10, 12)).astype("bool") self.x_int32 = np.zeros((10, 12)).astype("int32") self.x_int64 = np.zeros((10, 12)).astype("int64") self.x_float16 = np.zeros((10, 12)).astype("float16") self.x_float32 = np.zeros((10, 12)).astype("float32") self.x_float64 = np.zeros((10, 12)).astype("float64") self.dtype = ["bool", "int32", "int64", "float16", "float32", "float64"] self.place = ( paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace() ) def test_static_api(self): paddle.enable_static() with program_guard(Program(), Program()): # results are from [-100, 100). x_bool = paddle.fluid.data( name="x_bool", shape=[10, 12], dtype="bool" ) exe = paddle.static.Executor(self.place) # x dtype is bool output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"] outlist1 = [ paddle.randint_like(x_bool, low=-10, high=10, dtype=dtype) for dtype in self.dtype ] outs1 = exe.run(feed={'x_bool': self.x_bool}, fetch_list=outlist1) for out, dtype in zip(outs1, self.dtype): self.assertTrue(out.dtype, np.dtype(dtype)) self.assertTrue(((out >= -10) & (out <= 10)).all(), True) with program_guard(Program(), Program()): x_int32 = paddle.fluid.data( name="x_int32", shape=[10, 12], dtype="int32" ) exe = paddle.static.Executor(self.place) # x dtype is int32 output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"] outlist2 = [ paddle.randint_like(x_int32, low=-5, high=10, dtype=dtype) for dtype in self.dtype ] outs2 = exe.run(feed={'x_int32': self.x_int32}, fetch_list=outlist2) for out, dtype in zip(outs2, self.dtype): self.assertTrue(out.dtype, np.dtype(dtype)) self.assertTrue(((out >= -5) & (out <= 10)).all(), True) with program_guard(Program(), Program()): x_int64 = paddle.fluid.data( name="x_int64", shape=[10, 12], dtype="int64" ) exe = paddle.static.Executor(self.place) # x dtype is int64 output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"] outlist3 = [ paddle.randint_like(x_int64, low=-100, high=100, dtype=dtype) for dtype in self.dtype ] outs3 = exe.run(feed={'x_int64': self.x_int64}, fetch_list=outlist3) for out, dtype in zip(outs3, self.dtype): self.assertTrue(out.dtype, np.dtype(dtype)) self.assertTrue(((out >= -100) & (out <= 100)).all(), True) if paddle.is_compiled_with_cuda(): with program_guard(Program(), Program()): x_float16 = paddle.fluid.data( name="x_float16", shape=[10, 12], dtype="float16" ) exe = paddle.static.Executor(self.place) # x dtype is float16 output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"] outlist4 = [ paddle.randint_like(x_float16, low=-3, high=25, dtype=dtype) for dtype in self.dtype ] outs4 = exe.run( feed={'x_float16': self.x_float16}, fetch_list=outlist4 ) for out, dtype in zip(outs4, self.dtype): self.assertTrue(out.dtype, np.dtype(dtype)) self.assertTrue(((out >= -3) & (out <= 25)).all(), True) with program_guard(Program(), Program()): x_float32 = paddle.fluid.data( name="x_float32", shape=[10, 12], dtype="float32" ) exe = paddle.static.Executor(self.place) # x dtype is float32 output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"] outlist5 = [ paddle.randint_like(x_float32, low=-25, high=25, dtype=dtype) for dtype in self.dtype ] outs5 = exe.run( feed={'x_float32': self.x_float32}, fetch_list=outlist5 ) for out, dtype in zip(outs5, self.dtype): self.assertTrue(out.dtype, np.dtype(dtype)) self.assertTrue(((out >= -25) & (out <= 25)).all(), True) with program_guard(Program(), Program()): x_float64 = paddle.fluid.data( name="x_float64", shape=[10, 12], dtype="float64" ) exe = paddle.static.Executor(self.place) # x dtype is float64 output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"] outlist6 = [ paddle.randint_like(x_float64, low=-16, high=16, dtype=dtype) for dtype in self.dtype ] outs6 = exe.run( feed={'x_float64': self.x_float64}, fetch_list=outlist6 ) for out, dtype in zip(outs6, self.dtype): self.assertTrue(out.dtype, dtype) self.assertTrue(((out >= -16) & (out <= 16)).all(), True) def test_dygraph_api(self): paddle.disable_static(self.place) # x dtype ["bool", "int32", "int64", "float32", "float64"] for x in [ self.x_bool, self.x_int32, self.x_int64, self.x_float32, self.x_float64, ]: x_inputs = paddle.to_tensor(x) # self.dtype ["bool", "int32", "int64", "float16", "float32", "float64"] for dtype in self.dtype: out = paddle.randint_like( x_inputs, low=-100, high=100, dtype=dtype ) self.assertTrue(out.numpy().dtype, np.dtype(dtype)) self.assertTrue( ((out.numpy() >= -100) & (out.numpy() <= 100)).all(), True ) # x dtype ["float16"] if paddle.is_compiled_with_cuda(): x_inputs = paddle.to_tensor(self.x_float16) # self.dtype ["bool", "int32", "int64", "float16", "float32", "float64"] for dtype in self.dtype: out = paddle.randint_like( x_inputs, low=-100, high=100, dtype=dtype ) self.assertTrue(out.numpy().dtype, np.dtype(dtype)) self.assertTrue( ((out.numpy() >= -100) & (out.numpy() <= 100)).all(), True ) paddle.enable_static() def test_errors(self): paddle.enable_static() with program_guard(Program(), Program()): x_bool = paddle.fluid.data( name="x_bool", shape=[10, 12], dtype="bool" ) x_int32 = paddle.fluid.data( name="x_int32", shape=[10, 12], dtype="int32" ) x_int64 = paddle.fluid.data( name="x_int64", shape=[10, 12], dtype="int64" ) x_float16 = paddle.fluid.data( name="x_float16", shape=[10, 12], dtype="float16" ) x_float32 = paddle.fluid.data( name="x_float32", shape=[10, 12], dtype="float32" ) x_float64 = paddle.fluid.data( name="x_float64", shape=[10, 12], dtype="float64" ) # x dtype is bool # low is 5 and high is 5, low must less then high self.assertRaises( ValueError, paddle.randint_like, x_bool, low=5, high=5 ) # low(default value) is 0 and high is -5, low must less then high self.assertRaises(ValueError, paddle.randint_like, x_bool, high=-5) # if high is None, low must be greater than 0 self.assertRaises(ValueError, paddle.randint_like, x_bool, low=-5) # x dtype is int32 # low is 5 and high is 5, low must less then high self.assertRaises( ValueError, paddle.randint_like, x_int32, low=5, high=5 ) # low(default value) is 0 and high is -5, low must less then high self.assertRaises(ValueError, paddle.randint_like, x_int32, high=-5) # if high is None, low must be greater than 0 self.assertRaises(ValueError, paddle.randint_like, x_int32, low=-5) # x dtype is int64 # low is 5 and high is 5, low must less then high self.assertRaises( ValueError, paddle.randint_like, x_int64, low=5, high=5 ) # low(default value) is 0 and high is -5, low must less then high self.assertRaises(ValueError, paddle.randint_like, x_int64, high=-5) # if high is None, low must be greater than 0 self.assertRaises(ValueError, paddle.randint_like, x_int64, low=-5) # x dtype is float16 # low is 5 and high is 5, low must less then high if paddle.is_compiled_with_cuda(): self.assertRaises( ValueError, paddle.randint_like, x_float16, low=5, high=5 ) # low(default value) is 0 and high is -5, low must less then high self.assertRaises( ValueError, paddle.randint_like, x_float16, high=-5 ) # if high is None, low must be greater than 0 self.assertRaises( ValueError, paddle.randint_like, x_float16, low=-5 ) # x dtype is float32 # low is 5 and high is 5, low must less then high self.assertRaises( ValueError, paddle.randint_like, x_float32, low=5, high=5 ) # low(default value) is 0 and high is -5, low must less then high self.assertRaises( ValueError, paddle.randint_like, x_float32, high=-5 ) # if high is None, low must be greater than 0 self.assertRaises( ValueError, paddle.randint_like, x_float32, low=-5 ) # x dtype is float64 # low is 5 and high is 5, low must less then high self.assertRaises( ValueError, paddle.randint_like, x_float64, low=5, high=5 ) # low(default value) is 0 and high is -5, low must less then high self.assertRaises( ValueError, paddle.randint_like, x_float64, high=-5 ) # if high is None, low must be greater than 0 self.assertRaises( ValueError, paddle.randint_like, x_float64, low=-5 ) if __name__ == "__main__": unittest.main()