# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import unittest import numpy as np import paddle import paddle.fluid.core as core import paddle.fluid.io as io from paddle.fluid.dygraph import guard from paddle.fluid.executor import Executor from paddle.fluid.framework import ( ParamBase, Variable, _test_eager_guard, default_main_program, ) from paddle.fluid.initializer import ConstantInitializer paddle.enable_static() main_program = default_main_program() class ParameterChecks(unittest.TestCase): def test_parameter(self): shape = [784, 100] val = 1.0625 b = main_program.global_block() param = b.create_parameter( name='fc.w', shape=shape, dtype='float32', initializer=ConstantInitializer(val), ) self.assertIsNotNone(param) self.assertEqual('fc.w', param.name) self.assertEqual((784, 100), param.shape) self.assertEqual(core.VarDesc.VarType.FP32, param.dtype) self.assertEqual(0, param.block.idx) exe = Executor(paddle.CPUPlace()) p = exe.run(main_program, fetch_list=[param])[0] np.testing.assert_array_equal(p, np.ones(shape) * val) p = io.get_parameter_value_by_name('fc.w', exe, main_program) np.testing.assert_array_equal(p, np.ones(shape) * val) zero_dim_param = b.create_parameter(name='x', shape=[], dtype='float32') self.assertEqual(zero_dim_param.shape, ()) def func_parambase(self): with guard(): linear = paddle.nn.Linear(10, 10) param = linear.weight memo = {} param_copy = copy.deepcopy(param, memo) self.assertEqual(param_copy.shape, param.shape) self.assertEqual(param_copy.type, param.type) self.assertEqual(param_copy.dtype, param.dtype) self.assertEqual(str(param_copy.place), str(param.place)) np.testing.assert_array_equal(param_copy.numpy(), param.numpy()) self.assertEqual(param_copy.optimize_attr, param.optimize_attr) self.assertEqual(param_copy.regularizer, param.regularizer) self.assertEqual( param_copy.do_model_average, param.do_model_average ) self.assertEqual(param_copy.need_clip, param.need_clip) self.assertEqual(param_copy.is_distributed, param.is_distributed) pram_copy2 = copy.deepcopy(param, memo) self.assertEqual(id(param_copy), id(pram_copy2)) zero_dim_param = ParamBase(shape=[], dtype='float32') self.assertEqual(zero_dim_param.shape, []) def test_parambase(self): with _test_eager_guard(): self.func_parambase() self.func_parambase() def func_exception(self): b = main_program.global_block() with self.assertRaises(ValueError): b.create_parameter( name='test', shape=None, dtype='float32', initializer=None ) with self.assertRaises(ValueError): b.create_parameter( name='test', shape=[1], dtype=None, initializer=None ) with self.assertRaises(ValueError): b.create_parameter( name='test', shape=[], dtype='float32', initializer=None ) with self.assertRaises(ValueError): b.create_parameter( name='test', shape=[-1], dtype='float32', initializer=None ) def func_parambase_to_vector(self): with guard(): initializer = paddle.ParamAttr( initializer=paddle.nn.initializer.Constant(3.0) ) linear1 = paddle.nn.Linear(10, 15, initializer) vec = paddle.nn.utils.parameters_to_vector(linear1.parameters()) self.assertEqual(linear1.weight.shape, [10, 15]) self.assertEqual(linear1.bias.shape, [15]) self.assertTrue(isinstance(vec, Variable)) self.assertTrue(vec.shape, [165]) linear2 = paddle.nn.Linear(10, 15) paddle.nn.utils.vector_to_parameters(vec, linear2.parameters()) self.assertEqual(linear2.weight.shape, [10, 15]) self.assertEqual(linear2.bias.shape, [15]) np.testing.assert_array_equal( linear1.weight.numpy(), linear2.weight.numpy() ) np.testing.assert_array_equal( linear1.bias.numpy(), linear2.bias.numpy() ) self.assertTrue(linear2.weight.is_leaf, True) self.assertTrue(linear2.bias.is_leaf, True) def test_parambase_to_vector(self): with _test_eager_guard(): self.func_parambase_to_vector() self.func_parambase_to_vector() if __name__ == '__main__': unittest.main()